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OPTIMAL APPROXIMATION BY ONE GAUSSIAN

FUNCTION TO PROBABILITY DENSITY FUNCTIONS

Gwang Il Kim, Seung Yeon Cho, and Doobae Jun∗

Abstract. In this paper, we introduce the optimal approximation by a

Gaussian function for a probability density function. We show that the ap-

proximation can be obtained by solving a non-linear system of parameters
of Gaussian function. Then, to understand the non-normality of the em-

pirical distributions observed in financial markets, we consider the nearly

Gaussian function that consists of an optimally approximated Gaussian
function and a small periodically oscillating density function. We show

that, depending on the parameters of the oscillation, the nearly Gaussian

functions can have fairly thick heavy tails.

1. Introduction

It is well known that the empirical distributions of major targets analyzed in
financial markets, such as daily stock returns, are non-normal/non-Gaussian [1].
Particularly, the non-normal distributional peculiarities in the thickness of the
tail, skewness, and kurtosis of their distributions have attracted the attention
of many researchers, which have been analyzed in various ways, according to
several distributions and methods suggested as alternatives: In [2, 3], targeting
major countries such as the US, Canada and Japan, the non-normality of the
distribution of daily returns of financial assets was analyzed. Also, in [4], by
using more flexible distributions like the exponential generalized beta (EGB)
and skewed generalized t (SGT) distribution, it was shown that the distribu-
tion of daily stock returns of a large emerging European stock market, invested
in the Istanbul Stock Exchange, has highly non-normal characteristics. In [5],
authors show that the distribution of market returns is not only leptokurtic but
also skewed, and in [6], by adopting the Pearson type families of distributions,
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the estimation of the parameters of the stochastic differential equation (SDE)
related to the distributions was performed for the stock returns in the US and
Japanese markets. In addition, in [7, 8], several alternatives to the distribu-
tions of market returns of diverse countries were proposed and their ability as
alternatives were investigated.

In this paper, we propose another perspective for understanding the non-
normality of the empirically observed distributions in financial markets, accord-
ing to the following two steps: First, we introduce the optimal approximation
by a Gaussian function to a probability density function and show when it can
be achieved. Second, we consider nearly Gaussian function represented as the
weighted sum of an optimal Gaussian approximation and a small periodically
oscillating density function. And, we show how the tail of the nearly Gaussian
function can be thicker than that of the given optimal Gaussian function.

The outline of this paper is given as follows: In Section 2, we introduce the
optimal approximation by a Gaussian function. Then, in Section 3, we analyze
the behaviors of the mean and variance of the nearly Gaussian function with a
small periodically oscillating density. Finally, in Section 4, we summarize our
results and propose some directions for future work.

2. Optimal approximation by a Gaussian function

Definition 1. For arbitrary functions f, g ∈ L2(R), we define ⟨f, g⟩ by

⟨f, g⟩ =
∫
R
f(x)g(x)dx.

As well-known, using the inner product ⟨ , ⟩, we can naturally introduce a

vector norm ∥ · ∥ in L2(R): ∥f∥ = ⟨f, f⟩1/2, ∀f ∈ L2(R), with which we can also
measure the difference between two functions f, g ∈ L2(R) as ∥f − g∥.

Definition 2. In L2(R), a normalized Gaussian function φ with mean µ and
variation σ2 is given by

φµ,σ(x) =
1√
σ
√
π
exp

(
− (x− µ)2

2σ2

)
.(1)

Now, we consider the Gaussian function approximation to an arbitrary prob-
ability density function in L2(R).

Definition 3. For a probability density function ρ ∈ L2(R), the normalized
Gaussian function φ with mean µ and variation σ2 is said to be optimal with
weight k in approximating ρ, if ∥ρ− kφµ,σ∥ is minimized. In this case, we call
the function kφµ,σ the Gaussian function approximation of ρ.

Proposition 2.1. For a probability density function ρ ∈ L2(R), the Gaussian
function approximation optimized at a = (µ0, σ0) is given by

ϕ(x) =
k0√
σ0

√
π
exp

(
− (x− µ0)

2

2σ2
0

)
,(2)
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where k0 = ⟨ρ, φµ0,σ0⟩ and a is the solution to the system of equations〈
ρ,

∂

∂µ
φµ,σ

〉
= 0,

〈
ρ,

∂

∂σ
φµ,σ

〉
= 0.(3)

Proof. First, let
∑

= {(k, µ, σ) | k, µ ∈ R, and, σ ∈ R+} and Ψ(k, µ, σ) = ∥ρ−
kφµ,σ∥2. Then Ψ(k, µ, σ) is a C1 function on

∑
. Hence, if the Gaussian function

approximation ϕ(x) is optimized with a special weight k0 at a = (µ0, σ0), i.e.
∥ρ − kφµ,σ∥ is minimized at (k0, µ0, σ0) (equivalently, so is ∥ρ − kφµ,σ∥2), the
following equations hold:

∂

∂k
Ψ(k0, µ0, σ0) = 0,

∂

∂µ
Ψ(k0, µ0, σ0) = 0,

∂

∂σ
Ψ(k0, µ0, σ0) = 0.(4)

Here, since ⟨φµ,σ, φµ,σ⟩ = 1, we have that

Ψ(k, µ, σ) = ∥ρ− kφµ,σ∥2

= ⟨ρ, ρ⟩ − 2k⟨ρ, φµ,σ⟩+ k2.(5)

Therefore, by Eq. (4), we obtain

−2⟨ρ, φµ0,σ0
⟩+ 2k0 = 0, −2k0

〈
ρ,

∂

∂µ
φµ,σ

〉 ∣∣∣
a
= 0,

−2k0

〈
ρ,

∂

∂σ
φµ,σ

〉 ∣∣∣
a
= 0.

This completes the proof. □

Proposition 4 provides the necessary condition that the optimal Gaussian ap-
proximation should satisfy. In the following theorem, we show that minimizing
Ψ(k, µ, σ) is equivalent to maximizing ⟨ρ, φµ,σ⟩2.

Theorem 2.2. Let Ω = {(µ, σ) | µ ∈ R, and, σ ∈ R+} and let ρ ∈ L2(R) be a
probability density function. Then the Gaussian function approximation kφµ,σ

is optimized at a = (µ0, σ0) ∈ Ω if ⟨ρ, φµ,σ⟩2 has its global maximum at a and
k = ⟨ρ, φµ0,σ0

⟩.

Proof. We first note that

Ψ(k, µ, σ) = ∥ρ− kφµ,σ∥2

= ⟨ρ, ρ⟩ − 2k ⟨ρ, φµ,σ⟩+ k2

= ⟨ρ, ρ⟩+ (k − ⟨ρ, φµ,σ⟩)2 − ⟨ρ, φµ,σ⟩2 .(6)

Since ρ is a given function, if ⟨ρ, φµ,σ⟩2 is maximized at a and k = ⟨ρ, φµ0,σ0⟩,
it is trivial that Ψ(k, µ, σ) is optimized at a. □



540 G. W. KIM, S. Y. CHO, AND D.JUN

Example 2.3. Consider a probability density function ρ(x) as follows:

ρ(x) =


0, x < −2;
0.1, −2 ≤ x < 0;
0.3, 0 ≤ x < 2;
0.2, 2 ≤ x < 3;
0, 3 ≤ x.

According to Theorem 5, in order to find the optimal Gaussian approximation
of a probability density function ρ, we need to maximize ⟨ρ, φµ,σ⟩2. For this,
we solve a non-linear system:

⟨ρ, ∂µφµ,σ⟩ = 0, ⟨ρ, ∂σφµ,σ⟩ = 0,(7)

and use the resultants for comupting k = ⟨ρ, φµ,σ⟩. In this example, we are
informed N values of distribution function ρ on grid points xi = xmin + i∆x,
i = 0, 1, ..., N − 1, where the number N is sufficiently large to resolve the shape
of the distribution function ρ. Now, we treat (7) in a discrete manner, i.e., we
aim to find p = (µ, σ) such that

F1(p) =
∑
i

ρi∂µφµ,σ(xi) = 0, F2(p) =
∑
i

ρi∂σφµ,σ(xi) = 0.(8)

Recalling the form of φµ,σ(x) in (1), the partial derivatives are given by

∂µφµ,σ(x) =
x− µ

σ2
φµ,σ(x), ∂σφµ,σ(x) =

(
− 1

2σ
+

(x− µ)2

σ3

)
φµ,σ(x).

In order to solve (8), we use Newton’s method:

pk+1 = pk − JF (pk)
−1F (pk),

F (pk) =

[
F1(pk)
F2(pk)

]
pk =

[
µk

σk

]
,

where the Jacobian matrix JF (p) is given by

JF (p) =

[
∂µF1(p) ∂σF1(p)
∂µF2(p) ∂σF2(p)

]
=

[ ∑
i ρi∂

2
µφµ,σ(xi)

∑
i ρi∂σ∂µφµ,σ(xi)∑

i ρi∂µ∂σφµ,σ(xi)
∑

i ρi∂
2
σφµ,σ(xi)

]
.

Note that JF (p) is just the linear combination of partial derivatives:

∂2µφµ,σ(x) =

(
− 1

σ2
+

(x− µ)2

σ4

)
φµ,σ(x),

∂σ∂µφµ,σ(x) = ∂µ∂σφµ,σ(x) =

(
x− µ

σ2

)(
− 5

2σ
+

(x− µ)2

σ3

)
φµ,σ(x),

∂2σφµ,σ(x) =

[(
− 1

2σ
+

(x− µ)2

σ3

)2

+

(
1

2σ2
− 3(x− µ)2

σ4

)]
φµ,σ(x).

Since the convergence of Newton’s method depends on the initial guess of µ
and σ, as an suitable initial guess p0, we use the mean and variance of the N
samples ρi, i = 0, ...N − 1. In this example, Newton’s method with tolerance
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tol = 10−8 gives an optimal parameter (µopt, σopt) ≈ (0.9796, 1.4715) and kopt ≈
0.4588 within only five iterations. In the left panel of Figure 1, we compare the
two functions ρ and ρapp := koptφµopt,σopt

. Also, in the right panel of Figure 1,
we show that the error E(µ, σ) := ∥ρ − kφµ,σ∥2 is minimized around the red
point popt = (0.9796, 1.4715).
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Figure 1. Optimal approximation of the density function ρ
by the Gaussian function. (a) Shapes of ρ and ρapp. (b) Error
surface E(µ, σ).

Remark 1. On the other hand, in the case of probability density function with
the shape similar to a Gaussian function, we can obtain a more precise approx-
imation of the density function. However, if not as in the previous example, to
obtain such a precise optimal approximation, we need to control the norm of its
remainder density function (for example, performing additional approximations
on the remainder density function several times) or using multiple Gaussian
functions from the beginning.

In this paper, we focus on the case where the norm of the remainder density
function can be well controlled, as shown in the next section. Here, for the
sake of the following discussion, let us introduce nearly Gaussian functions, as
follows: Let ψµ0,σ0

be the normalized density function of ϕ = k0φµ0,σ0
so that

the integral of ψµ0,σ0
on R is 1, i.e.

ψµ0,σ0(x) =
1

k0
√

2
√
πσ0

ϕ(x), x ∈ R.

Then, we can we write the density function ρ as follows:

ρ = k0φµ0,σ0 + (ρ− k0φµ0,σ0)

= ψµ0,σ0
+ k0φµ0,σ0

− ψµ0,σ0
+ (ρ− k0φµ0,σ0

)

= ψµ0,σ0
+ (k0

√
2
√
πσ0 − 1)ψµ0,σ0

+ (ρ− k0φµ0,σ0
).
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Here, we note that, if ∥ρ−k0φµ0,σ0∥ is sufficiently small and k0
√

2
√
πσ0 ≃ 1,

the density function ρ is close to Gaussian, i.e., ρ ≃ ψµ0,σ0
. In this case, we call

the density function ρ nearly Gaussian function.
In the next section, we focus on the case where a small perturbation part of

nearly Gaussian function is given by a harmonic oscillation.

3. Nearly Gaussian function with harmonic oscillation

In the financial market, the behavior of the return of an asset is described
by the stochastic process, which means that its corresponding probability den-
sity function is represented by the function of x and t. To understand the
non-normality of the probability density function, we assume that ρϵ(x, t), the
approximation of ρ(x, t), consists of the optimally approximated Gaussian func-
tion and an very small remainder density term in simple harmonic oscillation,
which is given as follows; for 0 < ϵ≪ 1,

ρϵ(x, t) = (1− ϵ)
1

k0(t)
√

2
√
πσ0(t)

ϕ(x, t) + ϵη(x−A sinωt),(9)

where η is a probability density function such that 0 ≤ η(x) ∈ L2(R) with∫
R η(x)dx = 1. Here the function ϕ(x, t) can be thought as the optimal approx-
imation of ρ(x, t) obtained by Theorem 2.2 at each time t and k0(t), σ0(t) are
its corresponding optimal parameters. Note that the first term on the right side
of Eq. (9) can be simplified as a specific Gaussian function;

1

k0(t)
√
2
√
πσ0(t)

ϕ(x, t) =
1√

2πσ0(t)
exp

(
− (x− µ0(t))

2

2σ0(t)2

)
,

and we immediately obtain that
∫
R

1

k0(t)
√

2
√
πσ0(t)

ϕ(x, t)dx = 1. Although

ρϵ(x, t) in Eq. (9) is written as the weighted sum of a Gaussian function and a
small oscillating function, it can also be understood as the sum of a Gaussian
function and a small perturbation periodic in time:

ρϵ(x, t) =
1

k0(t)
√

2
√
πσ0(t)

ϕ(x, t) + ϵ

(
η(x−A sinωt)− 1

k0(t)
√

2
√
πσ0(t)

ϕ(x, t)

)
.

(10)

Then from now on, we analyze how the mean and variance the distribution
function changes according to the form of a Gaussian function and a small
perturbation. Before proceeding, we first calculate the mean and variance of
the accompanied distribution η(x−A sinωt) at time t ≥ 0.

Lemma 3.1. Assume that a distribution with the density function η(x) has
mean µ1 and variance σ2

1. Then the mean µ(t) and the variance σ(t)2 of the
distribution with the modified density function η(x−A sinωt) is given by

µ(t) = µ1 +A sinωt, σ(t)2 = σ2
1 .(11)
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Proof. First, we find the mean µ(t) of the distribution with the density function
η(x−A sinωt). Since

∫
R
η(x)dx = 1, we can easily obtain

µ(t) =

∫
R
xη(x−A sinωt)dx

=

∫
R
xη(x)dx+A sinωt

∫
R
η(x)dx

= µ1 +A sinωt.

Next, we use µ(t) to find the variance σ(t)2 of the distribution η(x − A sinωt)
as follows:

σ(t)2 =

∫
R
(x− µ(t))2η(x−A sinωt)dx

=

∫
R
(x+A sinωt)2η(x)dx− 2µ(t)

∫
R
(x+A sinωt)η(x)dx

+ µ(t)2
∫
R
η(x)dx

=

∫
R
x2η(x)dx+ 2A sinωt

∫
R
xη(x)dx+ (A sinωt)2

∫
R
η(x)dx

− 2µ(t)

∫
R
xη(x)dx+

(
−2µ(t)A sinωt+ µ(t)2

) ∫
R
η(x)dx.

Recalling the assumptions:∫
R

η(x)dx = 1,

∫
R

xη(x)dx = µ1,

∫
R

(x− µ1)
2η(x)dx = σ2

1

we have

σ(t)2 = σ2
1 + µ2

1 + 2A sinωtµ1 + (A sinωt)2 − 2µ1µ(t)− 2µ(t)A sinωt+ µ(t)2

= σ2
1 + (µ1 − µ(t))2 + 2A sinωt(µ1 − µ(t)) + (A sinωt)2

= σ2
1 + (µ1 − µ(t) +A sinωt)2

= σ2
1 .

This completes the proof. □

By Lemma 3.1, we see that any modification by a simple harmonic oscil-
lation on the density function of a probability distribution never changes the
variance of the probability distribution, even though the mean of the probability
distribution shows the same simple harmonic oscillation as in the modification.

In the following proposition, we show that the small harmonic oscillation
η(x−A sinωt), included as part of the distribution function ρϵ(x, t) in Eq. (9),
can play important roles in determining the mean and variance of the distribu-
tion function ρϵ(x, t) at time t.
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Proposition 3.2. Suppose that a probability density function ρϵ(x, t) is given
as in Eq. (9). Then the mean µϵ(t) and the variance σϵ(t)

2 of the distribution
with the density function ρϵ(x, t) is given by

µϵ(t) = (1− ϵ)µ0(t) + ϵ(µ1 +A sinωt),(12)

σϵ(t)
2 = (1− ϵ)(σ0(t)

2 + ϵ2h(t)2) + ϵ(σ2
1 + (1− ϵ)2h(t)2),(13)

where µ1 and σ2
1 are respectively the mean and the variance of the distribution

with the density function η(x), and h(t) = µ0(t)− µ1 −A sinωt.

Proof. For brevity, we omit the t in µ0 and σ0 in the proof. We begin by finding
the mean µϵ(t) of the distribution function ρϵ(x, t).

µϵ(t) = (1− ϵ)

∫
R
x

1

k0
√

2
√
πσ0

ϕ(x)dx+ ϵ

∫
R
xη(x−A sinωt)dx

= (1− ϵ)

∫
R
x

1√
2πσ0

exp

(
− (x− µ0)

2

2σ2
0

)
dx+ ϵ

∫
R
(x+A sinωt)η(x)dx

= (1− ϵ)µ0 + ϵ(µ1 +A sinωt).

Using this, we obtain the variance σϵ(t)
2 as follows:

σϵ(t)
2 = (1− ϵ)

∫
R
(x2 − 2µϵ(t)x+ µϵ(t)

2)
1√
2πσ0

exp

(
− (x− µ0)

2

2σ2
0

)
dx

+ ϵ

∫
R
(x2 − 2µϵ(t)x+ µϵ(t)

2)η(x−A sinωt)dx

= I1 + I2.

Since we know∫
R

η(x)dx = 1,

∫
R

xη(x)dx = µ1,

∫
R

(x− µ1)
2η(x)dx = σ2

1 ,

we can compute I1 as

I1 = (1− ϵ)

∫
R
x2

1√
2πσ0

exp

(
− (x− µ0)

2

2σ2
0

)
dx

− 2(1− ϵ)µϵ(t)

∫
R
x

1√
2πσ0

exp

(
− (x− µ0)

2

2σ2
0

)
dx

+ (1− ϵ)µϵ(t)
2

∫
R

1√
2πσ0

exp

(
− (x− µ0)

2

2σ2
0

)
dx

= (1− ϵ)(σ2
0 + µ2

0)− 2(1− ϵ)µϵ(t)µ0 + (1− ϵ)µϵ(t)
2

= (1− ϵ)
(
σ2
0 + (µ0 − µϵ(t))

2
)
.
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As in the proof of Proposition 3.2, we compute I2 as

I2 = ϵ

∫
R

(
x2 − 2µϵ(t)x+ µϵ(t)

2
)
η(x−A sinωt)dx

= ϵ

∫
R

(
(x+A sinωt)2 − 2µϵ(t)(x+A sinωt) + µϵ(t)

2
)
η(x)dx

= ϵ(σ2
1 + µ2

1) + 2ϵ(A sinωt− µϵ(t))µ1 + ϵ(A sinωt− µϵ(t))
2

= ϵ
(
σ2
1 + (µ1 +A sinωt− µϵ(t))

2
)
.

Combining I1 and I2, we have

σϵ(t)
2 = (1− ϵ)

(
σ2
0 + (µ0 − µϵ(t))

2
)
+ ϵ
(
σ2
1 + (µ1 +A sinωt− µϵ(t))

2
)
.

Letting h(t) = µ0 − µ1 −A sinωt, we have

µ0 − µϵ(t) = ϵ(µ0 − µ1 −A sinωt) = ϵh(t),

µ1 +A sinωt− µϵ(t) = −(1− ϵ)(µ0 − µ1 −A sinωt) = −(1− ϵ)h(t),

and hence σϵ(t)
2 can be simplified as

σϵ(t)
2 = (1− ϵ)(σ2

0 + ϵ2h(t)2) + ϵ(σ2
1 + (1− ϵ)2h(t)2).

□

Proposition 3.2 shows how the mean and the variance of the modified dis-
tribution change by the added small distribution with simple harmonic oscilla-
tion: They all depend strongly on the simple harmonic oscillation, despite the
algebraic way in which the added distribution combines with the existing dis-
tribution. In particular, even though the algebraic scale ϵ is sufficiently small,
when the amplitude of A and µ1 is very large, the changes in all of the mean
and the variance of the modified distribution may be so large that it cannot be
ignored.

In the following theorem, we provide an sufficient condition for σϵ(t)
2 to be

large as we want. The result implies that one may describe the fat tail of a
probability density function with nearly Gaussian function if µ1 is sufficiently
far from µ0.

Theorem 3.3. Suppose that a probability function ρϵ(x, t) is given as in Eq. (9).
Given ν ≥ 0, if the parameters of Gaussian distribution function and ϵ satisfy

|µ0(t)− µ1| > (
√
ν + 1)σ0/

√
ϵ, A ≃ σ0(t)/

√
ϵ,(14)

then
σϵ(t)

2

σ0(t)2
= λ+O(ϵ), λ > ν.

Proof. By the Proposition 3.2, we have

σϵ(t)
2

σ2
0

= (1− ϵ)

(
1 + ϵ2

h(t)2

σ2
0

)
+ ϵ

(
σ2
1

σ2
0

+ (1− ϵ)2
h(t)2

σ2
0

)
.(15)
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We also recall that

h(t)

σ0
=
µ0 − µ1 −A sinωt

σ0
.

Since the assumption implies
h(t)2

σ0(t)
= O

(
1

ϵ

)
, we can rewrite Eq. 15 as

σϵ(t)
2

σ2
0

= 1 + ϵ
h(t)2

σ2
0

+O(ϵ).

Note that

1 + ϵ
h(t)2

σ2
0

= 1 + ϵ

(
(µ0 − µ1)

2 − 2(µ0 − µ1)A sinωt+ (A sinωt)2

σ2
0

)
> 1 + ϵ

(
(µ0 − µ1)

2 − 2|µ0 − µ1||A|
σ2
0

)
≃ 1 + ϵ

(
(µ0 − µ1)

2 − 2|µ0 − µ1|σ0/
√
ϵ

σ2
0

)
.

In the last approximation, we used A ≃ σ0/
√
ϵ. Then, we use that the following

quadratic function g satisfies for ν ≥ 0

g(x) = x2 − 2|x|σ0/
√
ϵ > g((

√
ν + 1)σ0/

√
ϵ), |x| > (

√
ν + 1)σ0/

√
ϵ.

This completes the proof. □

4. Conclusions

In this paper, in contrast to other works, we have shown how the optimal
approximation by a Gaussian function to a probability density function can be
achieved. Then, we have shown that the nearly Gaussian function that consists
of a Gaussian function and a small oscillating density function can be used for
the description of the tail of a distribution by showing that its variance can be
greater than that of the Gaussian one.

Finally, we propose two avenues for further research: First, it would be inter-
esting to make this optimal approximation method more expansive so that we
can approximate probability density functions with more complicated shapes,
such as density functions with several peaks, unlike the one in this paper. We
reason that it could be achieved by splitting the given distribution to several
sub-distributions with only one peak so that the suitable linear combination of
the sub-distributions can reproduce the original distribution, and by optimally
approximating the sub-distributions by Gaussian functions. Second, it would
be also interesting to consider near Gaussian function with various types of
perturbations, and see how the changes affect the mean and variance of the
distribution functions.
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