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ABSTRACT

Density evolution was developed as a method for computing the capacity of low-density parity-check(LDPC)
codes under the sum-product algorithm [1]. Based on the assumption that the passed messages on the belief
propagation model can be approximated well by Gaussian random variables, a modified and simplified version of
density evolution technique was introduced in [2]. Recently, the min-sum algorithm was applied to the density
evolution of LDPC codes as an alternative decoding algorithm in [3]. Next question is how the min-sum
algorithm is combined with a Gaussian approximation. In this paper, the capacity of various rate LDPC codes is
obtained using the min-sum algorithm combined with the Gaussian approximation, which gives a simplest way of
LDPC code analysis. Unlike the sum-product algorithm, the symmetry condition [4] is not maintained in the
min-sum algorithm. Therefore, the variance as well as the mean of Gaussian distribution are recursively
computed in this analysis. It is also shown that the min-sum threshold under a gaussian approximation is well

matched to the simulation results.
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I . Introduction

A density evolution technique was recently
developed for the sum-product decoding
algorithm of LDPC codes and it explains the
capacity and convergence issues of the
iterative decoding. In [1], the density
evolution was used to track the density of
extrinsic message between the variable nodes
and check nodes of LDPC code on various
channel conditions. An simplified version of
the density evolution algorithm  was
introduced under a Gaussian approximation
in [2]. The Gaussian approximation was
based on the well known fact that the
extrinsic information can be well represented
as a Gaussian random variable as the number
of iteration increases. The message passing
expression for sum-product algorithm was
developed in [5] and its approximation was
also introduced. This approximation was used
for the density evolution based on the
min-sum algorithm in [3]. The probability
density function  for the min-sum
approximation was derived and the computed
min-sum capacities(thresholds) were compared
to those of the sum-product algorithm.

As pointed in [3], next question is to
combine the Gaussian approximation with the
min-sum algorithm. Empirically we know that
performance of sum-product algorithm is
better than that of min-sum algorithm. It is
interesting to know if this characteristic is
maintained under the Gaussian approximation
for the passed message. In this paper, the
density evolution of min-sum algorithm
under the Gaussian approximation is
presented and the capacities of both decoding
algorithms are compared. If we assume the
symmetry condition Ax)=A—x)e* for a
Gaussian probability density function Ax) as
in [4],[2] under the sum-product algorithm,

the variance of Gaussian density can be

represented by two times of the mean.
However, the symmetry condition does not
hold in the min-sum algorithm. Therefore, the
variance as well as the mean should be
iterative

computed during the density

evolution process.

H. Sum-Product algorithm under a
Gaussian approximation

A (d,,d.) LDPC code can be represented
by a bipartite graph which consists of
variable nodes with &, edges and check
nodes with 4, edges. A (3,6) LDPC code
bipartite graph is shown in Fig. 1. The

exchanged messages on the graph are the
Log-Likelihood Ratios (LLRs).

Variable node

(information bi + parity bits) Check node

Fig. 1. Bipartite graph of (3.6) regular LDPC code

The output messages from a variable node
is represented by v and the messages from a
check node is represented by u. Based on the
sum-product algorithm, the messages from

the variable and check nodes are represented
by

d.-1
v=A .+ Zl u; (D
v

tanh (- ) = tanh( ...tanh(—vd‘z—_l) (2)

A
2

937



gt F 4185 = 2] ‘03-10 Vol.28 No.10C

where A, represents a received message

c
from channel and the message from the node
receiving the output message is excluded.
Because of the independent and identically
distributed assumption [1],[2] for messages,
we omit any time index in the message
representation. With the gaussian
approximation [2], it is only needed to
compute the mean and variance of exchanged
messages recursively. In addition, based on
the symmetry condition Ax)=A—x)e* [1]
for the density Ax) of an LLR message, the
variance can be represented as two times the
mean. As a result, we need only to track the
mean of a gaussian density.

By taking expectation on both sides of eq.

(1), the message from a variable node is
v=A.+d,~)u

where x denotes the mean of random

variable x. Similarly, we can take the
expectation on both sides of eq. (2). To
simplify the notation, we define ¢(x) as:

( __)2

W= [ () p=e

= E[tanh(-%i)]

then, the expectation on the message from a

check node can be represented as:
=g v )¢(v 4 )

Then we can obtain # by taking inverse
function ¢ “!( -). To calculate the ¢(-)
and ¢ Y -) effectively, we wuse the

following approximation which was used in

[2].

L[ x =% 1
11—+ e 2——=-
~ 2V x Tx
¢’(x)_[1ieax"—3

i): x>10
x
x<10
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Fig. 2. Simulation results and thresholds of regular

(3,6) LDPC code for block size N= 10000
with Min-Sum and Sum-Product algorithm

O‘Gi}A—Huct O‘(r;:i‘n—z
d | d ] rate (LdB)
3161 05 (08740 (1.17) 0.8100 (1.83)
4] 8| 05 |0.8318 (1.06) | 0.7405 (2.61)
5110 05 |0.7907 (2.04) [ 0.6942 (3.17)
315 04 {09999 (0.97) [ 0.9036 (1.85)
41 6| 1/3 | 1.0036 (1.73) | 0.8631 (3.04)
314 ]025|1.2517 (1.06) | 1.0827 (2.32)
4 110] 0.6 |0.7437 (1.78) | 0.6767 (2.60)
3191 2/3 10.7047 (1.79) | 0.6800 (2.10)
5 (121 0.75 | 0.6294 (2.26) | 0.6165 (2.44)

Tabie 1. The Threshold on MIN-SUM and
SUM-PRODUCT algorithm for various pairs

(d,.d.)

where o=-0.4527, f=0.0218, and
y=10.86. By initially setting « to zero, we
can recursively update the mean of each
message until it converges to a finite value
or goes to infinity. When it goes to infinity,
it means that the density tends to a point
mass at infinity or equivalently, the
probability of error tends to zero. The

threshold is calculated as the maximum noise
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level (i.e., minimum SNR) from the channel
such that the probability of error tends to
zero [1],[2].

The thresholds, which are calculated by the
above method, are shown in Table 1 and the
simulation  results for the case of
(d,,d_)=1(3,6) is presented in Fig. 2. The
computed threshold is well matched to the
waterfall region of simulation curve.

M. Min-Sum algorithm under a
Gaussian approximation

The density evolution techniques in the
literature can be classified based on the way
of tracking the density function of extrinsic
information. One approach is a quantization
of a density function and apply the density
evolution equations approximately [1]. The
other approach is to quantize messages and
track probability mass function [6]. To avoid
these complex computations, a Gaussian
approximation approach was introduced in
[2], which reduces an infinite dimensional
problem into a one dimensional problem.
With this Gaussian approximation, it is only
necessary to track the mean and variance of
the exchanged extrinsic information.

Combining this Gaussian approximation
with the recent work in [3], a simpler
min-sum density evolution technique is
presented. For regular (d,,d,) LDPC

codes the min-sum message passing algorithm
at variable and check nodes is represented by

v=A .+ izllui (3)

u=sign(v v, Pminflyl, v, 11 (4)

where v is the Log Likelihood Ratio (LLR)
output from variable node and # is the LLR
output from check node and A, represents

the received message from the channel.

This min-sum message passing algorithm at a
check node was shown in [5][7][3]. According
to this expression, the output message from a

check node can be represented by the sign of
the product of the incoming messages and the
minimum absolute value among the incoming
messages, where the message from the node
receiving the output message is excluded.

On the min-sum density evolution with a

Gaussian assumption, our goal is to track the
mean v, - and variance 02,02 of the
LLRs during the iterative decoding. With the
distribution

independent and identically

assumption for the exchanged messages, v

and ¢ can be obtained from (3) as:

= A +d,~1 u (5)
o%=d% +(d ,~1d’ (6)

U

The calculation of # and ¢% is more

involved. When d_,.=3, the probability
density function (pdf) of the output message
from a check node based on (4) was derived

in [3] as:

flo=Ff, WA=F, N+/f, OA-F, (x)
+f, (—0F, (=0)+f, (-0F , (-2,
x>0 )

f)=f, DA-F, (=) +7, (D)(1=F, (=x)
+f,(=0F, D+f, (=0F , (0,
x>0 (8)

where f(x) and F(x) are the pdf and

the cumulative density function (cdf)
respectively. For the case of ¢.>3, f ,(x) is
obtained by recursive update with additional

pdf f,(x) upto i=d —1 as
F B = GGGy Fo) Fodu Fo, )

where G(-) a shorthand notation of
(12)-(13), which is the pdf of the output
message for the case of 4 ,=3.

—Z) (1—1), 02(1—1)

v at

Once we have

[—1 th iteration, the mean and variance at

[ th iteration are tracked asl)
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Using the Gaussian assumption on ¢, the

pdf and cdf f(vl_l), F(UJ“I) are obtained
from v (1_1),02U(1_1). Then, the pdf

f(ul—l) is obtained by (5)-(6). The mean and

variance u "V, ¢ Zu”‘l) are numerically
calculated  from £ Finally,
v P 62D at [ th iteration is obtained by

(7)-(8). The iterative mean and variance
tracking is initialized by the received message
from channel as:

—Z) 0 =", .
GZU(O)= 0.2/‘(=2 A .

This recursive calculation is executed for a
sufficiently large number of iterations (e.g.,
1000) to determine whether the message
converges to correct codewords at a certain
channel noise level. The convergence is
determined when the probability error,

equivalently the tail part (v<() of the pdf
f (x) goes to zero. The threshold is defined

as the maximum channel noise level for
which the message converges. Table 1 shows
GA

the computed thresholds o, 5 based on

the described min-sum algorithm for various

pairs (d,.d.). The

FE b/ N , Vvalues in dB are shown inside

corresponding

parentheses. For comparison, the thresholds
0‘%44 [ uct Of sum-product algorithm are also

shown in the samemanner. Fig. 2 shows the
simulation results and thresholds for regular

1) 1)) In [3] and [8], the pdfs are tracked as :

- -1
e

assumption.

940

without Gaussian

(3,6) LDPC code for block size N=10000 with
min-sum and sum-product algorithms. The
difference of thresholds (0.65dB) is well
matched to the difference of simulation
(0.5dB). The gap (0.15dB)
between the thresholds and simulation

performance

performance is due to the fact that the
thresholds is obtained on the infinite block
size and iteration numbers.

Fig. 3 shows how the mean of output
message is evolved from the mean of input
message at a check node based on two
different massage evolution algorithms. A
check node which has two inputs and one
output(i.e.,three edges) is considered. Fig. 3
shows the output message mean when one of
the input mean varies from 0 to 40 and the
other of input mean is fixed at 20. We can
see the output mean converges to 20 which
is minimum value of two input means for
both cases. However, the output mean of
sum-product algorithm converges faster then
that of min-sum algorithm.

IV. Conclusion

In this paper, the density evolution of
min-sum algorithm under the Gaussian
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Fig. 3. Evolution of input message at a
check node for two massage evolution
algorithm (sum-product vs. min-sum)
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approximation was presented and applied to
various rate LDPC codes. This simplified new
evolution technique can be used to obtain the
capacities(thresholds) of the LDPC code. The
capacities were computed based on the
min-sum algorithm and were compared with
the thresholds based on the sum-product
algorithms. It was also shown that the
computed threshold was well matched to the
simulation result.
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