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Abstract

The Gaussian geostatistical model has been widely used for modeling spatial data.
However, this model suffers from a severe difficulty in computation because inference
requires to invert a large covariance matrix in evaluating log-likelihood. In addressing
this computational challenge, three strategies have been employed: likelihood approx-
imation, lower dimensional space approximation, and Markov random field approxi-
mation. In this paper, we reviewed statistical approaches attacking the computational
challenge. As an illustration, we also applied integrated nested Laplace approximation
(INLA) technology, one of Markov approximation approach, to real data to provide an
example of its use in practice dealing with large spatial data.

Keywords: Gaussian field, Gaussian Markov field, integrated nested Laplace approxi-
mation.

1. Introduction

Suppose we have the data obtained by sampling a spatially continuous process {Z(s;)},
s; € R?, at a discrete set of locations S = {s;,i = 1,--- ,n} in a spatial region of interest
A C R?. Tt is common to assume

Y(si) = WB+ Z(s;) + ¢,

. 1.1

Eiumle(Onj)7 1)
where {Y (s;)} denotes our observations at locations, W; denotes a covariate vector associated
with Y(s;), and 3 denotes a corresponding coefficient vector. It is common to model {Z(s;)}
as a spatial Gaussian field (GF) with E{Z(s;)} = 0, Var{Z(s;)} = o2, and Corr{Z(s;),
Z(sj)} = p(||s; — s4];0) for an appropriate correlation function with corresponding pa-
rameter § and Euclidean distance || - ||. 72 is called the nugget variance in this context.
The correlation function is chosen from some parametric families, such as the Matérn, pow-
ered exponential or spherical (Cressie, 1993). Under model (1.1), Y = {Y(s1),...,Y (sn)}T
follows a multivariate Gaussian distribution,

Y ~ MVN{WB,V(0,7%)}, (1.2)

1 Assistant professor, Department of Statistics, Keimyung University, Daegu 100-741, Korea.
E-mail: park.jincheol@gw.kmu.ac.kr



496 Jincheol Park

where W = (W' ... . WT)and V(0,72?) = 3(0)+721, with I being the n xn identity matrix.
It is evident from the equation (1.2) that the evaluation of the likelihood involves inverting an
the nxn covariance matrix V (6, 72), where the computational complexity of matrix inversion
increases as O(n®) so that there have been practical limitation to employ Gaussian field
model. A variety of methods for tackling this obstacle have been proposed in the literatures.
These methods can be roughly grouped into three categories: likelihood approximation, lower
dimensional space approximation, and sparse matrix-based approximation. In the Section 2,
we will take a review on statistical methods developed to meet the large-data challenge. In
the Section 3, to a real rainfall data, using integrated nested Laplace approximation (INLA)
technique, we will fit the spatial model in order to illustrate its use in practice. The output
of INLA will be compared with the one of Kriging (Cressie, 1993) technique.

2. Review on methods

2.1. Likelihood approximation

The methods in the first category seek to approximate the likelihood function by a product
of conditional densities (see, e.g., Vecchia, 1988; Jones and Zhang, 1997; and Stein et al.,
2004) or in spectral domain (see e.g., Stein, 1999 and Fuentes, 2007). This approach can
be demonstrated best by Vecchia (1988) which sub-grouped the observation vector y into
sub-vectors y4, ..., Yy, to obtain a sequence of vectors y; = (y,,...,y;) and simplified the
likelihood using vy;s. Specifically, the exact likelihood of y is given by

b
p(nga ) ylvﬁv H y]|y;7176,0) (21)

Vecchia (1988) proposed to approximate (2.1) by replacing y7_; in the p(yj|yj_,; 8, 6) with
u;, a sub-vector of y*, where u; is selected in a way to simplify matrix operation. Then we
can approximate the exact likelihood p(y; 3, 0) by

b
p(y7ﬂ7 ) yl’ﬂa H y]|uJ—l7ﬂ76)

Concerns with these methods include adequacy of the likelihood approximation and some
implementation issues. In addition, expertise is required for selecting an appropriate spectral
density estimate or a sequence of conditional densities.

2.2. Lower dimensional space approximation

The methods in the second category seek to approximate the spatial process {Z(s)} by
a lower dimensional space process {Z(s)} with the use of smoothing techniques, such as
kernel convolutions, moving averages, low rank splines, or basis functions, see e.g., Wikle and
Cressie (1999), Lin et al. (2000), Kammann and Wand (2003), Paciorek (2007), and Banerjee
et al. (2008). For example, Banerjee et al. (2008) considered a set of knots s* = {s7,..., s} },
which may or may not form a subset of the entire collection of observed locations S. Then
Caussian field Z yield Z* = {Z(s}),..., Z(s5,)}7,

Z" ~ MVN(0,%(6)), (2.2)
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where 2(0) is the corresponding covariance matrix of m x m. Then the spatial intepolator
at site s is defined by Z(so) = E[Z(s¢)|Z"] which can be computed by LO)%(0)1Z
with ¢o(0) = {Cov(Z(s0), Z(s})),...,Cov(Z(s0), Z(s%,))}T. Then this interpolator defines
a predictive process Z(s) derived from parent process Z(s). Benerjee et al. (2008) proposed
to replace the equation (1.1) with

Y(s)=WEB+ Z(s) + ¢ (2.3)

In fitting (2.3), instead of working with n random effect Z, we now can work with m random
effect Z so that we need to invert m x m covariance matrix instead of a matrix of n x n
dimension.

Another approach to remark is to reduce dimension of covariance matrix by tapering
method (see e.g., Furrer et al., 2006; Kaufman et al., 2008), which essentially set elements
zero in a covariance matrix when a distance between two sites is located far in way to keep
the resulting tapered matrix positive definite. Specifically, using tapering function Kygper to
the original covariance matrix X, we can obtain the tapered covariance matrix by 3(0) o
K(v), where the dot notation o refers to Schur product and K(7) is a tapering matrix
with parameter . The (i, 7)!" element of K is Kyaper([|si — 8;|)- Then the log-likelihood of
Z ={Z(s1),...,Z(sn)}" is naturally approximated by

I*(2:6,%) = —3 108 [2(6) 0 K(7)] — 527 {S(8) 0 K(7)} 2. (2.4)

Even though it is intuitively appealing, this approximation is objected by the fact the cor-
responding score function is biased, that is, E [%l*(@)] # 0. An alternative approximation
is proposed in Kaufmann et al. (2008) by

1(2:8,7) =~ g [£(6) o ()| — 527 [(2(6) o K () oK) = (25)

T

which is derived from the property of trace operation, the fact ¥ = zz7, and

2T8(0) 'z = tr{2T271(0)2} = tr{zz" 2710} = tr{2(0)271(0)}.

Then maximising [(z; 8, v) now corresponds to solving an unbiased estimating equation for 0,
that is, E[;%1(6)] = 0. Although lower dimension space approximation methods can reduce
the computational burden to some extent, it cannot completely avoid a matrix inversion.
For a large dataset, the dimension of the approximation process {Z(s)} can still be very
high.

2.3. Markov random field approximation

The Markov random field approximation method (see e.g., Rue and Tjelmeland, 2002; Rue
and Held, 2005), as suggested by its name, is to approximate the spatial process by a Markov
random field of sparse covariance matrix. This method was first proposed for regularly spaced
data and extended to irregularly spaced data. For example, Hartman and Hossjer (2008)
approximated the spatial process by Markov random field on a lattice and interpolated
the irregularly spaced data based on the estimates at the grid points of the lattice. The
possibility was also discussed by Besag and Mondal (2005) of extending the de Wijs process,
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an intrinsic and generalised Gaussian random field, approximation to irregularly spaced data.
This approach typically model the data first using a Gaussian field (GF) on a set of locations
S, to construct a discretised GF with covariance matrix (). Then it tries to find a Gaussian
Markov field (GMRF) with neighbourhood structure and associated precision matrix @, an
inverse of covariance matrix, that is supposed to represent the GF. Finally using the GMRF
representation, it carries out computation taking advantage of sparse matrices. Rue et al.
(2009) proposed an efficient integrated nested Laplace approximation (INLA). The first step
of INLA is an approximation p(8|y) of marginal posterior of 6:

p(x,0,y)

p(Bly) o e (@0, y)

z=x*(0) ,

where pg (|0, y) is the Gaussian approximation to p(x|@, y) matching the true distribution
at the mode x*(0) for a given 0. The Gaussian approximation pg (x|, y) is possible because
p(x]0,y) can be written in a quadratic form such as

n

p(x, 8ly) < p(0)p(x|0) [ [ p(vilx:, 0)

i=1

x p(6)Q(8)* exp {;mTQm + > logp(iles e)} .
i=1

Now that p(6|y) tend to depart from Gaussian, the approximate posterior marginals can be
obtained through numerical integration using p(0|y). The next step is to construct posterior
marginals for the latent field p(x;|y) by

Plaily) =D p(wi|0k, y)p(Or|y)Ar,
k

where p(z;|0k,y) is an approximation to p(x;|@%,y) based upon the Laplace approximation
such that

p(z,0,y)

p(x;)0,y) x ———12L
p( | y) pG(m_i|$i,0,y)

zi=x] (z;,0)

Note that pg(x_;|z;, 0,y) is the Gaussian approximation to p(z_;|z;, 0,y) and x;(z;,0) is
the modal configuration.

Lindgren et al. (2010) showed that for some Gaussian random fields in the Matérn class,
there exists an explicit link between Gaussian random fields and Gaussian Markov random
fields, and suggest to model the data using Gaussian random fields but do the computations
using Gaussian Markov random fields. The GMRF representation can be constructed explic-
itly using a certain stochastic partial differential equation (SPDE) which has Gaussian field
with Matérn function as the solution when driven by Gaussian white noise. For the spatial
locations on irregular gird, Lindgren et al. (2010) suggested to subdivide A, the region of
interest, into a set of non-intersecting triangles, where any two triangles meet in at most a



Review on statistical methods for large spatial Gaussian data 499

common edge or corner (see Figure 3.2). The result is a basis function representation with
piecewise linear basis functions with Gaussian weights such as

2(s) =Y dr(s)wr

k=1

where ¢, is a basis function, wy is Gaussian weights and m is the number of vertices on the
triangulation. Markov dependencies is determined by a general triangulation of the domain.
However, as pointed out in their paper, their approach involves costs of solving stochastic
partial differential equations and for irregularly spaced data, it needs additional costs for
triangulation of locations of the observations.

Park and Liang (2012) proposed another hierarchical model for large irregularly spaced
data by introducing an auxiliary regular lattice loaded with Gaussian Markov random field.
Introducing an M x N auxiliary square lattice, W = {(k,{) : k=1,--- ,M,l=1,--- ,N}
over the A, region of interest, we can define a zero-mean GMRF X = {X},, (k,1) € W} on
the auxiliary lattice. Then we get log-likelihood function

MN
2

8l

)

o log(2m) — 2o log(o%) + 5 108 |Q(e)| — 55 Q(a)

log p(eer, 0?) = —
20

where Q(a) is the precision matrix with associated parameter o where & is a prolonged
vector of & arranged by rows, with zy; being its ((k — 1) x N + [)-th element; that is,

= T
T = (x113x12;"-7x1N;$217'-')$2N7"'1$M13-'~7xMN) .

Conditioned on the GMRF, we model {Z(s)} under a regression setting such that [Z(s;)| X]’s
are mutually independent, where X denotes the GMRF defined on the auxiliary lattice. Then
we have

Z(5)1X ~ N {17 Q@) X, 0*(1 - 1] Q(a)r)}

where r; = {Cov(Z(s;), X1),...,Cov(Z(s;), Xpn)}E. Tt is worthwhile to note that it is
equivalent to assuming a regression relationship between Z and X. This method completely
avoids the problem of matrix inversion by using analytical results of GMRFs, and thus
can have a high scalability. It is remarkable that the the computational complexity of the
proposed method is O(n), which implies that it can be applied to very large datasets with
reasonable CPU times (Park and Liang, 2010).

3. Real data analysis

As an illustration for large data analysis, we selected INLA technology because it can be
extended to non-Gaussian data, applicable in various contexts (Blangiardo et al., 2013; Muff
et al., 2014), and it is ready to use in R (Rue et al., 2014). We applied INLA method in
estimating spatial field of the rainfall data available in the R-package fields (Nychka et al.,
2014). The data was collected on 1720 stations located in North America of average rainfall
in tenths of millimeters for the months of June, July and August for the period of 1950
- 2010. For the analysis, we took square-root transformation to original observations. The
observation field is depicted in Figure 3.1.
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Figure 3.1 North America rainfall data collected on 1720 stations. The data is the averaged rainfall for
the months of June, July and August for the period of 1950-2010 in the unit of tenths of millimetres.

The model we considered was
Y (si) = Bo+ Z(si) + €4,

Eii@N(Oﬂj),

with the correlation structure on Z being parametrized by Matérn family with Var(Z) = o2
defined by

Cov{Z(s:), Z(s;)} = 2V+;(V)<||si — s;1l/9)"Bu|ls: — 5511/%), (3.1)

where B, is the modified Bessel function of the second kind, v is called a smoothness pa-
rameter, and ¢ is a parameter controlling a correlation length.

We used INLA R-package in fitting the spatial model. First, we subdivided the region of
interest A using triangulation method implemented in a command of inla.mesh.2d() that
has three primary options: cutoff, offset, and mazx.edge. The cutoff controls the number of
triangles on regions: the smaller cutoff, the larger number of the smaller triangles are used to
cover the region A. See Figure 3.2 in which it is also worthy of noticing that the coordinates
of the data are longitude and latitude so that the mesh is constructed on sphere. The offset
controls boundary size where the larger offset means the wider boundary as can be seen in
the Figure 3.3. The max.edge controls the maximum allowed triangle edge lengths in the
inner domain and in the outer extension so that it is a vector length two.
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Figure 3.2 Difference in mesh construction depending on cutoff option. For both figures, offset=(0.02,
0.02), maz.edge=(0.1, 0.3). Left: cutoff=0.1. Right: cutoff=0.01.
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Figure 3.3 Difference in mesh construction depending on offset option. For both figures cutoff=0.01,
maz.edge=(0.1, 0.3). Left: offset=(0.1, 0.1). Right: offset(0.3, 0.3).

To find the relatively best combination of options in meshing the region of interest, we
investigated 6 combinations of options (a combination of 2 and 3 possibilities respectively of
cutoff and offset) while keeping an assertional option max.edge=(0.1,0.3) constant. To select
the best one based on the prediction performance, we selected 100 subsets consisting of 30%
of the data, estimated the model without the selected dataset, and predicted the rainfall on
the selected sites. Table 3.1 provides the estimated mean square prediction error(MSPE)s
for 6 different combinations of options.

Table 3.1 Prediction performance for various options on mesh construction.
The numbers in the parentheses denote standard error.

cutoff offset MSPE

0.01 0.02 3.499 (0.019)
0.1 3.493 (0.017)
0.3 3.491 (0.017)

0.001 0.02 3.460 (0.017)
0.1 3.456 (0.018)
0.3 3.455 (0.018)

Now that (cutoff=0.001, offset=0.3) yielded the best MSPE performance, we input them
in constructing mesh. Then using inla() command, we estimated parameters: By = 43.835,
72 = 6.727, 62 = 281.493. The prediction field yielded by INLA is depicted in Figure 3.4(a)
on 80 x 200 grid points. The R-code is provided in the following:

#est.x is a data location of longitude and latitude
est.loc.cartesian = inla.mesh.map(est.x, projection = "longlat")
pred.loc.cartesian = inla.mesh.map(pred.grid, projection = "longlat")

#mesh construction

mesh <- inla.mesh.2d(loc=est.loc.cartesian,cutoff=0.001,0ffset=c(0.3,0.3),
max.edge=c(0.1,0.3))

spde = inla.spde2.matern(mesh)

#links the process on the mesh vertices triangles with the locations response
A.est =inla.spde.make.A(mesh, loc=est.loc.cartesian)

A.pred =inla.spde.make.A(mesh,loc=pred.loc.cartesian)

field.indices =inla.spde.make.index("field", n.spde=mesh$n)
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stack.est =inla.stack(data=list(rain=est.y),A=list(A.est),
effects=list(c(field.indices,list(Intercept=1))),tag="est")
stack.pred =inla.stack(data=list(rain=NA),A=list(A.pred),
effects=list(c(field.indices, list(Intercept=1))),tag="pred")
stack = inla.stack(stack.est, stack.pred)

#modeling
formula <- rain ~ -1 + Intercept + f(field, model=spde)
mod = inla(formula, data=inla.stack.data(stack, spde=spde), family="gaussian",

control.predictor=1list(A=inla.stack.A(stack), compute=TRUE))

To assess its performance, we also fitted the spatial model by Kriging (Cressie, 1993)
making use of Krig() command of field of R-package with the Matérn covariance with the
smoothness v = 0.5 (exponential covariance) and the correlation length ¢ = 30000 in (3.1).
The corresponding prediction field is depicted in Figure 3.4(b), which shows similar pattern
to the Figure 3.4(a).
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Figure 3.4 Predictions on 80 x 200 grid points (a) prediction by INLA (b) prediction by Kriging
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Table 3.2 Performance of INLA compared with Kriging.
The numbers in the parentheses denote standard error.

Methods MSPE Time (seconds)
INLA 3.455 (0.018) 16.87
Kriging 3.365 (0.017) 17.87

To obtain a better understanding of performance, we also applied Kriging to the identical
dataset and summarised the comparison in the Table 3.2. A slight outperformance of INLA
over Kriging can be explained by the information loss having occurred in the process of
Gaussian Markov field approximation to Gaussian field in INLA. In contrast, Kriging method
utilised a full covariance matrix of 1720 in running Krig() so that its information loss might
be smaller than INLA. It is also remarkable that INLA costs comparable computing time
with Kriging, even though INLA is a Bayesian approach contrary to Kriging which is based
on maximum likelihood estimation. With the real dataset, we could confirm that Markov
Gaussian field can approximate Gaussian field reasonably well.

4. Conclusion

In this paper, we have reviewed three statistical approaches geared to address the computa-
tion challenge arising in dealing with large spatial Gaussian data: likelihood approximation,
lower dimensional space approximation, and Markov random field approximation. One ad-
vantage of Markov random field approximation framework is that it can be extended to
non-Gaussian data without difficulty so that it is capable to deal with various data models.
Selecting INLA, one of computationally efficient Markov field approximation method, we
have applied it to real rainfall data as an illustration. From the real data analysis, we could
confirm that the Markov Gaussian field approach can provide a reasonable approximation
to Gaussian field.
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