• 제목/요약/키워드: Gauss Quadrature

검색결과 58건 처리시간 0.029초

재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석 (p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities)

  • 홍종현;박진환;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable Pasternak foundation by differential quadrature method

  • Abdelbaki, Bassem M.;Ahmed, Mohamed E. Sayed;Al Kaisy, Ahmed M.
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.357-371
    • /
    • 2022
  • This paper presents a parametric study on the free vibration analysis of a functionally graded material (FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical properties of the material vary in the transverse direction through the thickness of the plate according to the power-law distribution to represent the constituent components. The equation of motion of the circular plate has been carried out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable thickness profile.

p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정 (Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification)

  • 안재석;박진환;우광성
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.375-387
    • /
    • 2004
  • 팻취 보강된 철근콘크리트 구조물 해석을 위한 p-version 비선형 유한요소 모델이 제시되었다. 이방성 적층평판이론에 기초를 둔 제안된 모델은 Total Lagrangian기법에 기초한 von Karman의 대변형-소변형률 이론과 증분소성이론(incremental theory of plasticity)을 적용하였다. 콘크리트의 경화법칙(hardening rule)과 그에 따른 파괴기준을 고려하고, 단부 계면 층분리 모델(plate-end interfacial debonding model) 즉, 보강판 끝 부분에서의 콘크리트 탈락에 대한 기준으로서 Oehlers Model과 Raoof and Zhang Model을 사용하였다. 콘크리트는 두께 방향으로 층상화기법(layered model)이 이용되며, 철근과 보강판은 환산층(smeared reinforcing layer)으로 계산되도록 하였다 적분형 르장드르 다항식이 형상함수로 사용되며, 절점에서의 응력값 산출을 위해 Gauss Lobatto 수치적분법을 사용하였다. 본 연구의 목적은 p-version 유한요소법을 사용하여 RC구조물에 대한 수피해의 정확도 및 모델의 단순성을 높인 수 있도록 하였다. 따라서, 철근과 콘크리트모델에 대한 이론적 근거는 기존의 연구문헌에 근거를 두었으며, 수치해석의 적정성은 팻취 보강된 RC보와 슬래브에 대한 문헌의 실험치 및 해석치와 비교 분석되었다.

Combination of isogeometric analysis and extended finite element in linear crack analysis

  • Shojaee, S.;Ghelichi, M.;Izadpanah, E.
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.125-150
    • /
    • 2013
  • This paper intends to present an application of isogeometric analysis in crack problems. An isogeometric formula is developed based on NURBS basis functions - enriched and adopted via X-FEM enrichment functions. The proposed method which is represented by the combination of the two above-mentioned methods, first by using NURBS functions models the geometry exactly and then by defining level set function on domain, identifies available discontinuity in elements. Additional DOFs are allocated to elements containing the crack and X-FEM enrichment functions enrich approximate solution. Moreover, a subelement refinement technique is used to improve the accuracy of integration by the Gauss quadrature rule. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of the proposed method during calculation of crack parameters.

다중 안테나를 적용한 UWB 시스템의 PN 부호 포착 성능 분석 (Analysis of PN Code Acquisition Performance with Multiple Antennas in a UWB System)

  • 김은철;김진영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.69-72
    • /
    • 2005
  • In this paper, pseudo noise (PN) code acquisition performance with multiple antennas in a UWB time hopping/code division multiple access system is analyzed. The closed form for the conditional probability is derived, using the Gauss-Hermite quadrature formula, when the signal with Gaussian distribution goes through the lognormal fading channel. The performance comparison of the above mentioned schemes shows that the code acquisition performance with a diversity combining technique, especially when increasing the number of antennas, is more robust than that using no diversity.

  • PDF

A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method

  • Kim, Chang-Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.264-277
    • /
    • 2015
  • This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS applications to the aerospace engineering problems are demonstrated to prove this point.

구조물 주변의 Stokes 흐름에 대한 적응적 유한요소 해석을 위한 변절점 요소 (Variable-Node Element for Adaptive Finite Element Analysis of Stokes Flow around Structure)

  • 최창근;유원진;정근영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.168-175
    • /
    • 1996
  • This paper deals with the variable-node element for fluid flow and the adaptive h-version mesh refinement algorithm. The transient element has been formulated by the Galerkin approach in which the pressure term is replaced with the penalty function. The present element having variable mid-side node and is suitable for constructing a locally refined mesh avoiding the use of the highly distorted elements. A modified Gauss quadrature is needed to integrate the element matrices to solve the trouble associated with the discontinuity of derivatives of shape functions. Several numerical examples show that the proposed element can be effectively used in the h-version adapt ive mesh refinement

  • PDF

이동 위성 통신 채널에서 다이버시티 수신기법을 적용한 BPSK 및 QPSK 신호의 오율 특성 (Error Performance of BPSK and QPSK Signals with Diversity Reception in Mobile-Satellite Communication Channel)

  • 박해천;강영흥;황인관;조성준
    • 한국전자파학회지:전자파기술
    • /
    • 제5권3호
    • /
    • pp.36-47
    • /
    • 1994
  • 업링크와 다운링크 경로상에 각각 가산성 백색 가우스잡음이 존재하는 이동 위성 통신로에서 $\pi$1VTA의 비선 형성에 의한 BPSK신호와 QPSK선호의 오율성능을 조사하였다. 다운렁크 정로상의 페이딩은 Rician 분포를 한다고 가정하였다. 또한 선택적 다이버시티에 대한 효과를 분석하였다. 선택적 다이버시티의 확률빌도함수에 관한 N차 모멘트를 구하였으며, 선택적 다이버시타의 확률밀도함수에 대한 근사 이산 확률분포를 고전적인 모 멘트 기법 (CMT)을 이용하여 유도하였다. 오율은 Gauss Quadrature Formula와 근사 이산 확률 분포를 이용 하여 계산하였다.

  • PDF

THE TRAPEZOIDAL RULE WITH A NONLINEAR COORDINATE TRANSFORMATION FOR WEAKLY SINGULAR INTEGRALS

  • Yun, Beong-In
    • 대한수학회지
    • /
    • 제41권6호
    • /
    • pp.957-976
    • /
    • 2004
  • It is well known that the application of the nonlinear coordinate transformations is useful for efficient numerical evaluation of weakly singular integrals. In this paper, we consider the trapezoidal rule combined with a nonlinear transformation $\Omega$$_{m}$(b;$\chi$), containing a parameter b, proposed first by Yun [14]. It is shown that the trapezoidal rule with the transformation $\Omega$$_{m}$(b;$\chi$), like the case of the Gauss-Legendre quadrature rule, can improve the asymptotic truncation error by using a moderately large b. By several examples, we compare the numerical results of the present method with those of some existing methods. This shows the superiority of the transformation $\Omega$$_{m}$(b;$\chi$).TEX>).

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.