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THE TRAPEZOIDAL RULE WITH A
NONLINEAR COORDINATE TRANSFORMATION
FOR WEAKLY SINGULAR INTEGRALS

Beong IN Yun

ABSTRACT. It is well known that the application of the nonlinear
coordinate transformations is useful for efficient numerical evalu-
ation of weakly singular integrals. In this paper, we consider the
trapezoidal rule combined with a nonlinear transformation Q.. (b; z),
containing a parameter b, proposed first by Yun [14]. It is shown
that the trapezoidal rule with the transformation Q. (b; x), like the
case of the Gauss-Legendre quadrature rule, can improve the as-
ymptotic truncation error by using a moderately large b. By several
examples, we compare the numerical results of the present method
with those of some existing methods. This shows the superiority of
the transformation Qn (b; x).

1. Introduction

We consider weakly singular integrals of the form

1) I(giap) = /

1
(1—az)a(1+a:)ﬂg(:c) dx o, B> -1,
1

where g(x) is a well-behaved functions with g(1) # 0, g(—1) # 0. For
accurate numerical evaluation of these weakly singular integrals, many
nonlinear coordinate transformation techniques have been developed by
the literature [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. All of
these techniques have a property that the Jacobian of the transfor-
mation is zero at the singular points, which weakens the order of the
original singularity. Among the coordinate transformations, sigmoidal
transformations are known to be prominent in the numerical fulfillment
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[3, 4, 5, 6, 11, 12]. Elliott [4] and Johnston and Elliott [7] have de-
rived the asymptotic truncation errors of the trapezoidal rule and the
Gauss quadrature rule, respectively, both of which include the sigmoidal
transformation.

Recently, Yun [14] has proposed a nonlinear transformation of order
m > 1 such as

et —1
(2) Qn(bz) = T 0<z<1,
for an arbitrary b # 0, which looks like a sigmoidal transformation of al-
gebraic type [4] except that its derivative is not strictly increasing on the
interval [0, 3], in general. It has been shown that the Gauss quadrature
rule using this transformation is very effective for accurate evaluation of
weakly singular integrals by virtue of the auxiliary parameter b. On the
other hand, Yun and Kim [15] proposed a sigmoidal transformation of
integral type :
1

3) m(b;2) = Qm()/ hm(b:€)dE,  0<z <1,

where Qm (b fo (b; &) d¢ and hyy,(b; ) is defined as

m—1
(4) b (b ) = (ebz“—@ - 1) . 0<z<l.

It has been shown that, in applying Gauss quadrature rule, the trans-
formation v, (b; ) as well as 2,,(b; ) is available for accurate numerical
evaluation of weakly singular integrals. However, the complete form of
~Ym(b; z) via analytical integration in (3) is not simple in view of numer-
ical implementation.

In this paper, we consider the trapezoidal rule for accurate numerical
evaluation of weakly singular integrals in (1) using the transformation
Q. (b; ) rather than the complicated sigmoidal transformation +,, (b; x).
From the formulae (13) and (14) in Section 3, we particularly note that
the coefficients of the series expansion of the transformation near z = 0
are not negligible in the asymptotic truncation error analysis. This may
be feasible because the number of subintervals, N for the trapezoidal
rule should be limited in numerical implementation. Fortunately, it can
be observed that the first two leading coefficients of the series expan-
sion of £,,,(b; z) are decreasing very fast as the parameter b goes large.
This fact makes it possible that the trapezoidal rule using Q,,(b; z) may
address very accurate numerical evaluation of weakly singular integrals.
For several numerical examples, we show that the present method dra-
matically improves the existing methods by choosing any value of b in a
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proper range. Furthermore, it is observed that the numerical errors of
the present method are consistent with the theoretical errors so long as
N is large enough.

In the next section, we present general properties of 2, (b; z) includ-
ing the geometrical behavior of the transformation near the singular
point. It is noted that, for a fixed m, the first two leading coeflicients
of the expansion of €,,(b; z) near x = 0 are decreasing in the form of
O (b/€®) and O (b?/e?), respectively, as b becomes large enough. In Sec-
tion 3, based on the error analysis of Elliott [4] for the trapezoidal rule,
it is shown that one may expect further improvement in the asymptotic
truncation error by increasing the value of b in Q,,(b;z) with a fixed
order m. In Section 4, comparing numerical results of the transforma-
tion €, (b;z) with those of the Sidi- and elementary sigmoidal trans-
formations, we show that the present method produces highly improved
evaluation of weakly singular integrals according to the parameter b. In
addition, we can find that the present method is also applicable to the
logarithmic singular integrals appearing essentially in the two dimen-
sional boundary element method.

10
...... using 72Sidi(x)
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using Q2(4; )
using Q2(16; x)
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(a) G2(£;0.2,0.6) using v51%(z) and Qa(b;z), b= 4, 16
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(b) G5(&;—0.7,0) using 75'4i(z) and Q5(b; z), b = 10, 60

FIGURE 1. Graphs of Gm(§;,8) in (10) composed of
sigmoidal transformations 34 (z) and Q,,(b; ), respec-
tively.

2. Properties of a nonlinear transformation, Q,,(b; )

From the definition in (2), we have the general properties of Q,(b; )
which almost accord with those of the traditional sigmoidal transforma-
tions [4].

THEOREM 1. For any real b # 0 and m > 1, the transformation
Q(b; x) satisfies the followings.
(i) Qn(b;2) € CH0,1) N C>(0,1).
(i) Qnb;x) + Qub;l—2z)=1, 0<z<1.
(iii) Qm(b;z) is strictly increasing on [0,1] with Q,(b;0) = 0 and
Qn(b;1) = 1.
(iv) Near z =0, Qp(b; ) = O(z™).
(v) The first two leading coefficients of the series expansion of 0y, (b; x)
near z = 0 behave as O (b/e?) and O (b%/e®), respectively, for
b > 1 with a fixed m.

Proof. The properties (i)—(iv) have been shown in Yun [14] already.
For the property (v), by tedious calculations, we have the Taylor series
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[ Esldl e

FIGURE 2. Numerical errors |Es‘d‘| and IEJ%,2(b)|> b=
4, 10, 16, for I in the range 10 < N < 90.

expansion of ,,(b; ) near x = 0 as

(5) Qun(b;7) = C (b;m)a™ {1 + iD?(b; m)wk} ;

k=1
where
b mbe®
Q. — — Qrp. —
(6) Colsm) = Co(b) = 35—,  Drlm) = 53—
Therefore, we can find that the first two leading coefficients, C§}(b) and
C&(b) - DY (b;m) in (5) imply the property (v). O

From the property (ii) in Theorem 1, it follows that Q,(b;z) =
Q (51 —x), 0 <z <1 Moreover, one can see that the asymptotic
behavior of the derivative, Q] (b;z) at £ =1/2 is

beb/2m
O (b 1) — m N
M) m (53) 2m(eb/2™ — 1) 00

for a large value of the parameter b with a fixed m. On the other
hand, for a fixed b, 2/, (b; %) ~ O (m) as m goes to the infinity. These
relations indicate the rate of which the transformation €,,(b; x) spreads
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FIGURE 3. Numerical errors |EY ,(b)|, N = 20, 50, 80,
for I; in the range 2 < b < 28.

the central nodes of the numerical integration toward the end points of
the integration interval.

In general, for any m > 1, let v, (x) be a real valued function satisfy-
ing the properties (i) —(iv) such as the usual sigmoidal transformation,
and let the series of v, (z) take the form

(8) Ym(z) = Co(m)z™ {1 + }:Dk(m)l’k}
k=1

near z = 0. For the integrand f(z) = (1 — 2)*(1 + z)Pg(z) in (1), we
apply the coordinate transformation as

(9) wzl_z’)’m(%ﬁé)a ~1<¢€<1.
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FIGURE 4. Numerical errors |E§\),’5(b)|, N = 20, 30, 50,
for I in the range 1 < b < 70.

Then the integral in (1) becomes

Hmmﬂ%=/:f<l— ( ))7 ( 2?)%
w LGN
o(1-2 (557)) 0 (55)

2
1
- [ Gutsapde
It should be noted that v}, (0) = 4,.(1) = 0 from Theorem 1 and, more
precisely, v/,(x) = O(z™™!) near z = 0 and ~/,(z) = O((1 — 2)™ 1)
near z = 1. Therefore, the singularities of O((1 — z)*) near z = 1
and O((1 + z)®) near x = —1, in (1), have been translated into those
of O ((1-¢)m+0)-1) and O ((1 + &)™IH+A)-1)] respectively, in (10).
This fact is important in that the singularities at £ = —1 and x = 1 are

weakened enough by the transformation v, of large order m. Figure 1
shows the graphs of G2(£;0.2,0.6) and G5(&;—0.7,0) with g(z) = 1
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FIGURE 5. Numerical errors |EY -(B)|, N = 20, 30, 50,
for Iy in the range 5 < b < 80.

using the Sidi- transformation v5i%(x) defined in (16) and the present
transformation 2, (b; z) for some integral values of b. Both v5i4i(z) and
Qrn(b;x), for a proper value of m with respect to o and 3, bring the
values of G, (€, o, B) at the end points into the zero. Particularly, in the
graphs corresponding to £2,,,(b; x), it is observed that the flat ranges of
Gm{&, o, B) near both end points become wider as the value of b goes
large. Therefore, by intuition, we may expect much better numerical
evaluation of the integral (1) by employing the transformation O, (b; z).

3. The trapezoidal rule and asymptotic error analysis

It is well known that the truncation error of the trapezoidal rule is
given by Euler-Maclaurin expansion which involves the values of the in-
tegrand and its derivatives at the end points. As mentioned in Elliott
[4], a suitably chosen sigmoidal transformation of the variable of inte-
gration such as (9) will allow the derivatives at the end points to be zero
and, thereby, it will improve the rate of convergence of the quadrature
surn.
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FIGURE 6. Numerical errors |E1%75(b)}, N = 20, 30, 40,
for I in the range 10 < b < 40.

For numerical evaluation of the integral (10), let m satisfy m(1+a)—
1>0and m(1+83)—1>0 for given o, 8 > —1. Then, noting that
Gm(z; @) vanishes at the end points z = £1, we define a quadrature
sum corresponding to the trapezoidal rule as follows :

g N-1 i
1) Qlg= =D Gn(giah),  G=-l+2%,
j=1
where N is the number of subintervals of [—1, 1]. If we define the related
error as

(12) Enm(g; o, 8) = I(g;0,8) — Qg

then we have the asymptotic truncation error for Enn,(g; o, 3) as the
following theorem.

THEOREM 2. Suppose g(z) is holomorphic on the strip S = {z €
C| —1 < Re(z) < 1} and real on the interval [—1,1] with g(1) # 0,
g(—1) # 0. Let yn(x) be an arbitrary transformation of order m > 1
satisfying the properties (i)—(iv) in Theorem 1 with the local behavior
(8) near x = 0. Then for large enough N, we have

(13) EN,m(g§a7/8) ~ J(a7m’ N)g(l) + J(/Bam7N)g(_1),
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TABLE 1. Results of the numerical errors for the integral
I (b=4, 10, 16)

N b EJ%,Z(b) (E~1%2(b)) EISV‘%‘ E}f\}eén

4 —8.7x1075 (2.7 x 107%)
10 10 1.7x1072 (20x1078)  27x10"% 82x 1074
16 —1.9x 107! (—2.9 x 10~1%)

4 6.3 x 107% (6.5 x 1079)

20 10 -55x1076(1.1x1078) 52x107* 1.7x1074
16 —1.4x 1073 (8.6 x 10712)

4 2.6 x 1075 (2.6 x 107%)
30 10 32x107° (48x107%) 20x107* 6.4 x107°
16 —6.3x 107 (5.0 x 10712)

4 1.4x1076 (1.4x10°°)
40 10 25x107°(26x107°  9.8x107° 3.3 x10°°
16 —2.4x1078 (3.0 x 10712

4 8.1x 1077 (8.2x1077)
50 10 1.6x107°%(1.6x107% 58x107% 1.9x107°
16 —7.9x 107! (1.9 x 1071?)

4 53x1077(53x%1077)
60 10 1.1x1079(1.1x107°  37x107% 1.2x107°
16 9.5 x 10713 (1.3 x 10712)

7
9

4 3.7x1077(3.7x 1077)
70 10 75x10710(7.6x1071%) 26x107° 8.6x 1076
16 8.8 x 10713(9.2 x 10713)

where, for w = &, 83,
J(w, m, N)
» — _ gltectBy 100 (m)] {g(l —m(1+w),1)
1 1 1
+ (1 +w+ E) Dy(m)¢(—m(1 +w), 1)‘]\7}]\[(1—+w)7;

and { is a generalized Riemann zeta function.
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TABLE 2. The optimal integer value b* of b and the nu-
merical error E?,J(b*) compared with Eﬁl,%“ for the inte-
gral 1.

N b ER,()  ERy

10 4 -87x10"% 82x10~*
20 8 —-15x10"7 1.7x10°¢
30 10 32x107° 6.4x10°°
40 12 2.3x10°0 33x10°°
50 14 1.5x 1071 1.9x10°5
60 16 9.5x1073  1.2x10°°
70 18 3.0x1074 86x107°

Proof. Referring to Theorem 4.7 in [4] with ¢, = 1, if we employ the
transformation (9) with the local behavior in (8) then, by straightfor-
ward algebra, we have (13) without difficulty. d

Theorem 2 has been induced based on the assumption that, for large
N, the major contribution to the asymptotic error comes from the neigh-
borhood of the singular points £ = *1. Therefore, the resultant trunca-
tion error given in (13) contains only the local asymptotic behavior of
the transformation vy, (x) such as

Ym(z) = Co(m) {z™ + Dl(m)mm“} + O(z™?)
V(@) = Co(m) {ma™ " + Di(m)(m + 1)z™} + O(z™*1),
near z = 0 (ie. £ = £1). _

To compare the transformation Q,,(b; ) defined in (2), in which we
are interested, with well-known sigmoidal transformations, we introduce

the elementary sigmoidal transformation [6] and the Sidi- transformation
[11] of order m > 1 defined as

(15)

,Yelem .73) — z™
16) m z™ + (1 —z)™
Sidi VvrT((m+1)/2) [* m-1
Yn (2) = sinmg)™ ™" d¢,
" Tm2)  Jo
on the interval 0 < z < 1. For large N, we denote E]e\}er’;‘, EJS\}‘%‘1 as the
asymptotic truncation errors of the trapezoidal rule (11) with £ (z)

and 43di(z), respectively. Similarly, we denote E%m(b) as the error

corresponding to the transformation Q,,(b; x).
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TABLE 3. Results of the numerical errors for the integral
Iy (b =10, 20, 40)

N b Ef 5 () (ER5() ES B
10 —1.7x1073 (-2.9 x 1079)

10 20 -52x1073(-22x1077) 59x 1073 2.4 x 104
40 -3.1x1072 (-3.9x 107
10 57x1077 (1.3 x107%)

20 20 -21x107%(-49x107%) 1.0x10"3% 1.3x10*
40 7.8x107° (—2.5 x 10712)
10 5.9%x1077 (6.7x1077)

30 20 -75x10710(23x107%) 3.7x107* 50x107°
40 -1.9x1077 (-3.8x10713)
10 36x1077 (3.8 x1077)

40 20 15x107°(21x107%  18x107* 24x107°
40 —4.7x 1070 (—5.6 x 10714)
10 23x1077(24%x1077)

50 20 1.4x1079(1.6 x 107°) 1.0x107% 1.4 x107°
40 22x 1071 (1.2 x 10714)
10 1.5 x 1077 (1.6 x 10™7)

60 20 19x107°(1.1x107% 6.6 x107> 9.0x 1076
40 —1.8x 10711 (2.6 x 10714)
10 1.1x1077(1.1x1077)

70 20 9.6x10719(84x1071%) 45x1075 6.1 x107°
40 9.1 x 1071 (2.7 x 10714)

We can see that the leading coeflicients of the series expansion of
v3idi(z) near x = 0 are

an  {cg¥m)}

_ [ o 3t st 5t 1end
4’3 71615327 35 ° ’

m=2

The leading coefficients corresponding to most sigmoidal transforma-
tions of integral type such as Korobev [8]-, Sidi [11]- and Elliott [4]-
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TABLE 4. The optimal integer value b* of b and the nu-
merical error EY; 5(b*) compared with EJ%® for the inte-
gral Io.

N b ER 5(0%) Eqem

10 1  41x10°° 2.4 %104
20 11  6.1x10°8 1.3 x 1074
30 19 1.7x107%  50x10°8
40 25 85x1071 24 x10°°
50 40 22x1071 14x1075
60 40 —18x10" 90x 1078
70 60 —9.1x107'% 6.1 x10°°

transformations increase with respect to the order m while those of the
transformations of algebraic type like v2€™ () and Q,,, (b; z) are indepen-
dent of m. That is, the leading coefficients of 72" (z) are C§™(m) = 1
and those of O (b;7) are C§(b;m) = 42~ as shown in (6). In partic-
ular, it should be noted that the value of C§}(h;m) can be sufficiently
reduced by increasing the parameter b. Moreover, in (8), D™ (m) = m
for y&°™ (z) and D§}(b;m) = mbe®/ (e’ — 1) for Qy,(b; z) as given in (6).
Thus, from Theorem 2, the asymptotic truncation error ES_(b) in using
Q. (b; x) becomes 7

(18)  Enn(b) ~O|b [5} X Nirgmii 97 min{a, B}

when b goes to the infinity, for a fixed m and a large N. From this, we
can see that Ej%m(b) goes to zero very rapidly as b becomes large for
any given q > —1.

If we consider the additional third term of the local behavior of
Q(b;z) near x = 0 then, since the corresponding coefficient in (8)
is

(19)
beb {3(e™® — 1) + (1 — €) + 4b(1 + €*) } _ 9
o 2 (eb — 1) e
Dy (b;m) =
mbe® {(m — 1)(1 — e) + mb(1 + €°)} >3

bl

2 (eb — 1)
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TABLE 5. Results of the numerical errors for the integral
I3 (b =10, 30, 60)

N b ER 5 () (ERs®) ERS ER
10 3.3x 1073 (5.3 x 1073)

10 30 -12x10"% (27x107%) 1.3x 10" 4.1 x 1072
60 —9.6 x 1072 (6.0 x 1079)
10 2.6x 1073 (1.6 x 1079%)

20 30 —-9.7x107%(52x107%) 47x107%2 1.5x1072
60 —1.0x 1073 (1.4 x 1079)
10 85x107* (8.5 x 1074)

30 30 32x107%(3.5x107%) 25x10"% 7.9x1073
60 —1.0 x 1073 (6.5 x 10710)
10 54 x107% (5.4 x 107%)

40 30 20x107%(21x107%) 1.7x1072 51x1073
60 —1.0x 1077 (3.8 x 10719)
10  3.8x107* (3.8 x 107%)

50 30 14x107® (1.5x107%) 1.1x107% 3.6x 1073
60 —7.4x 10710 (2.6 x 10719)
10 29x107* (2.9 x 107%)

60 30 1.1x107%(1.1x107%) 9.0x1073 28x 1073
60 1.6 x 10710 (1.9 x 10~19)
10 22x107*(22x107%)

70 30 83x1077(85x1077) 7.2x107% 22x1073
60 1.4 x 10710 (1.4 x 10719)

we may suspect that

(20)

a 9 b 1+q 1
ENm(b) ~ O b L—b] X NOFamez

when b goes to the infinity, for a fixed m and a large N.
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TABLE 6. The optimal integer value b* of b and the nu-

merical error EY, 5(b*) compared with E{%® for the inte-
gral Is
N b BRs(%) ERE

10 13 —85x105 4.1x102
20 28 —42x1077 15x1072
30 40 -47x10"% 7.9x107°
40 49 -9.9x107° 51x103
50 58 —2.1x1071% 36x1073
60 64 3.8x1071?2 28x1073
70 80 —6.1x10712 22x1073

In the result, using the transformation ,,(b;x), we may expect
highly improved error of the trapezoidal rule for weakly singular in-
tegrals by selecting somewhat large b. This prominent advantage of
Qum(b; z) persists also in applying the Gauss-Legendre quadrature rule
as shown in [14].

4. Numerical examples

In this section, we examine several algebraic weakly singular inte-
grals in the form of (1). In addition, a logarithmic singular integral is
also considered to show the extensive availability of the present method.
By applying the trapezoidal rule to the formula in (10), we compare
numerical results of the present transformation vy, (z) = Qp,(b; z) with

those of the existing sigmoidal transformations v, (z) = 72 (z) and

Fm(x) = Yt ().

In the numerical implementation, we compare the results using the
order m = 2 for the integral of o, > 0 in (1) and the order m = 5
for the others. The value of the parameter b has been chosen within the
range of integers for simplicity.

EXAMPLE 4.1. A caseof « = 0.2, § =0.6 and g(z) =11in (1) :

(21) I := I1(1;0.2,0.6) = /1 (1 -2)"2(1 + )% dx,
-1

of which the exact value is 1.704 030414819117 to 16 decimal digits.
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In this case, we have chosen the order of the transformations as m = 2
which is sufficient to weaken the original singularity. Table 1 gives the
results of the numerical errors comparing E?,Q(b), b = 4, 10, 16, with

E]S(,i’dzi and Eji}e;n for various numbers of subintervals, N = 10(10)70.
Therein, EJS\,i’dZi and Ej’\}e;“ denote the numerical errors corresponding to
Sidi- and elementary sigmoidal transformations, respectively. The re-
sults of E%’2(4) and E]%’z(lO) for all N > 10 and N > 20, respectively,
are better than those of both EJS\}j‘Zi and E?\l,‘fén For all N > 30, the abso-
lute values of EY} ,(10) are less than 10~® while those of E}% and E{%"
are greater than 1076, In particular, the absolute values of E?,’z(lG) are
less than 10710 for all N > 50, which is much improved than the cases
of the lower values b < 16. Figure 2 shows that the rate of decrease of
]Ejf\l,z(b)| with respect to N grows rapid as the value of b becomes large.

In addition, Table 1 includes the theoretical values of the asymptotic
truncation error Eﬁg(b) calculated by the formula (13). One can find

that the numerical errors ES,(4), EX,(10) and EY,(16) are almost
compatible with their theoretical errors for N > 20, N ’2 30 and N > 60,
respectively.

The optimal value of the parameter b within the range of integers,
say, b* which results in the minimum value of |E]%2(b)| is given in Table 2
with respect to each N = 10(10)70.

In Figure 3, the numerical errors |EY ,(b)| with N = 20, 50, 80 are
compared in the range 2 < b < 28, which shows the approximate optimal
values of b and, at the same time, visualizes the global behavior of
the errors with respect to b. That is, for a fixed N, the error of the
trapezoidal rule using the transformation Qs (b; z) is decreasing so long
as b is modestly large and increasing again when b becomes greater than
the optimal value b*.

EXAMPLE 4.2. Cases of a = —-1/2,  =1/2 and a = -0.7, 6 =0
with g(z) =1in (1) :
1

(22) I == I(1;-1/2,1/2) :/ (1—2z)" Y21 +2)? dz
-1

1
(23) I3 .= I(1;-0.7,0) =/ a _x)—0.7 de.

-1
The exact values are I, = 7 and I3 = 4.103814 711 149 720 to 16 decimal
digits.
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In these cases, we have used m = 5 as the order of the transforma-
tions. In Table 3 for I», including the theoretical values of the asymptotic
error E‘?,,E)(b) given in (13), the numerical errors Ej%é(b), b =10, 20, 40,
are compared with E}Sv@%i and E}e\l,?gn for N = 10(10)90. It should be
noted that larger values of b than those in the case of lower singularity
such as Example 1 are required to obtain sufficient improvement. All
the results of E]%’f)(b), b = 10, 20, 40, are better than those both of E]S\}%i

and Ej’\l,fg“ for all N > 20. It is remarkable that, for all N > 40, the
absolute values of Ejf\z,75(40) are less than 10~ while those of EJS\}%i and
Eje\}‘f;“ are greater than 107%. On the other hand, we can find that the

numerical errors E,%,5(10) and E]%’S(ZO) are almost compatible with the
asymptotic errors for N > 30 and N > 40, respectively. In Table 4 for
I, optimal value b* of b within the range of integers is given with respect
to each N = 10(10)70.

Figure 4 shows the numerical errors |E < (b)| for I, with N =20, 30, 50
in the range 1 < b <€ 70, which shows similar tendency to the case of Iy
in Example 1.

For the integral I3, the numerical results of E%’S(b) with b = 10, 30, 60,

E]S\}%i and Ef\}egn are given in Table 5, and the optimal value b* is given
in Table 6 for N = 10(10)70. Figure 5 shows the behavior of |E§\),’5(b)|
with NV = 20, 30, 50 in the range 5 < b < 80.

ExXaAaMPLE 4.3. An algebraic and logarithmic singular integral, that
is, the case of @ = —1/2, 3 =0 and g(z) = log(1 —z) in (1) :
1

(24) I := I(log(1 —x);—-1/2,0) = /_1(1 — ) Y21og(1 — ) dx

of which exact value is —3.696 337962 555 286 to 16 decimal digits.

Since g does not satisfy the assumption of Theorem 2, we can not
calculate the asymptotic truncation error by the form of (13). Never-
theless, similarly to the cases of the previous examples, the numerical
errors for I given in Table 7 and Figure 6 show the superiority of the
transformation 5(b; z) according to the values of b in a proper range.

5. Conclusions

In this paper, for weakly singular integrals in the form of (1), we
have studied the trapezoidal rule using the transformation Q,,(b,z) in
(2). By various numerical examples, we have shown that the trapezoidal
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TABLE 7. Results of the numerical errors for the integral
I, (b=12, 24, 40)

N b Eys() EXS By b Ens(b)

12 —-14x10"2
10 24 —-46x1072 -90x10"2 —18x10"2 6 —84x103
40 -16x1071

12 -~19x1075
20 24 —-49x107% —18x107%2 -29x10"% 15 —-1.0x107°
40 -68x107*

12 —85x 1076
30 24 —-48x10"8% —72x10"% -—-11x10"3 23 —-46x10"%
40 -23x10"6

12 —4.9x10°°
40 24 -12x1078 —37x107% —-58x10"* 30 -3.9x10"1°
40 -72x107°

12 -3.1x10"®
50 24 —-83x107°% —22x103 —-34x10"% 40 -1.0x10-10
40 —-1.0x10710

12 —-2.0x10"
60 24 —6.7x107° —14x1078 —22x10"% 40 4.2x 10712
40 4.2x10712

12 -1.5x 1076
70 24 -7.1x107% —10x10"3 —-15x10"% 60 1.0x 10~
40 -99x10"10

rule combined with Q,,(b, z) dramatically improves the approximation
errors. Furthermore, the numerical errors are almost consistent with the
theoretical asymptotic truncation errors given in Theorem 2, for wide
range of N, as long as b is not excessively large.

The superiority of the present technique using the transformation
(b, ) over the other transformation techniques is that the former
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requires very small number of the subintervals, N to obtain highly ac-
curate approximation by taking a proper value of the parameter b which
depends mainly on the singularities, o and § and partially on N. It can
be found in numerical experiment that, for any arbitrary g(z) in (1),
the accuracy is maintained by a properly chosen b according to « and
0. In addition, it has been shown that the efficiency of present method
persists for the logarithmic singular integrals as well as the algebraic
weakly singular integrals.

Although we have mainly used the integer value of b for simplicity,
one can observe that particular real values of b would result in better
errors. It is left for the further work to search theoretical procedure on
the optimal value of b for given singularities of the integrands.
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