Browse > Article
http://dx.doi.org/10.12989/csm.2022.11.4.357

A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable Pasternak foundation by differential quadrature method  

Abdelbaki, Bassem M. (Mathematics and Physics Department, Faculty of Engineering, Fayoum University)
Ahmed, Mohamed E. Sayed (Mathematics and Physics Department, Faculty of Engineering, Fayoum University)
Al Kaisy, Ahmed M. (Mathematics and Physics Department, Faculty of Engineering, Fayoum University)
Publication Information
Coupled systems mechanics / v.11, no.4, 2022 , pp. 357-371 More about this Journal
Abstract
This paper presents a parametric study on the free vibration analysis of a functionally graded material (FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical properties of the material vary in the transverse direction through the thickness of the plate according to the power-law distribution to represent the constituent components. The equation of motion of the circular plate has been carried out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable thickness profile.
Keywords
circular plates; DQM; FGM; free vibration; Pasternak foundation; variable thickness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bert, C.W., Jang, S.K. and Striz, A.G. (1988), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618. https://doi.org/10.2514/3.9941.   DOI
2 Civalek, O. and Ersoy, H. (2009), "Free vibration and bending analysis of circular Mindlin plates using singular convolution method", Commun. Numer. Meth. Eng., 25(8), 907-922. https://doi.org/10.1002/cnm.1138.   DOI
3 Farhatnia, F., Babaei, J. and Foroudastan, R. (2018), "Thermo-Mechanical nonlinear bending analysis of functionally graded thick circular plates resting on Winkler foundation based on sinusoidal shear deformation theory", Arab. J. Sci. Eng., 43(3), 1137-1151. https://doi.org/10.1007/s13369-017-2753-2.   DOI
4 Gupta, U., Ansari, A. and Sharma, S. (2006), "Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation", J. Sound Vib., 297(3-5), 457-476. https://doi.org/10.1016/j.jsv.2006.01.073.   DOI
5 Gupta, U., Lal, R. and Sharma, S. (2006), "Vibration analysis of non-homogeneous circular plate of nonlinear thickness variation by differential quadrature method", J. Sound Vib., 298(4-5), 892-906. https://doi.org/10.1016/j.jsv.2006.05.030.   DOI
6 Hosseini-Hashemi, S., Akhavan, H., Taher, H.R.D., Daemi, N. and Alibeigloo, A. (2010), "Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation", Mater. Des., 31(4), 1871-1880. https://doi.org/10.1016/j.matdes.2009.10.060.   DOI
7 Leissa, A.W. (1969), Vibration of Plates, Vol. 160, Scientific and Technical Information Division, National Aeronautics and Space Administration.
8 Ma, L. and Wang, T. (2004), "Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Solid. Struct., 41(1), 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008.   DOI
9 Nie, G. and Zhong, Z. (2007), "Axisymmetric bending of two-directional functionally graded circular and annular plates", Acta Mechanica Solida Sinica, 20(4), 289-295. https://doi.org/10.1007/s10338-007-0734-9.   DOI
10 Rad, A.B. and Shariyat, M. (2013), "A three-dimensional elasticity solution for two-directional FGM annular plates with non-uniform elastic foundations subjected to normal and shear tractions", Acta Mechanica Solida Sinica, 26(6), 671-690. https://doi.org/10.1016/S0894-9166(14)60010-0.   DOI
11 Reddy, J., Wang, C. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mech.-A/Solid., 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4.   DOI
12 Shariyat, M. and Alipour, M. (2010), "A differential transform approach for modal analysis of variable thickness two-directional FGM circular plates on elastic foundations", Iran. J. Mech. Eng., 11(2), 15-38.
13 Shariyat, M. and Alipour, M. (2011), "Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations", Arch. Appl. Mech., 81(9), 1289-1306. https://doi.org/10.1007/s00419-010-0484-x.   DOI
14 Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press.
15 Shu, C. (2000), Application of Differential Quadrature Method to Structural and Vibration Analysis, Differential Quadrature and Its Application in Engineering, Springer.
16 Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "Proceedings of the first international symposium on functionally gradient materials", Sendai, Japan.
17 Zheng, L. and Zhong, Z. (2009), "Exact solution for axisymmetric bending of functionally graded circular plate", Tsinghua Sci. Technol., 14, 64-68. https://doi.org/10.1016/S1007-0214(10)70033-X.   DOI
18 Bert, C., Jang, S. and Striz, A. (1987), "New methods for analyzing vibration of structural components", Structures, Structural Dynamics and Materials Conference, Monterey, CA, April.
19 Abdelbaki, B.M. and Ahmed, M. (2022), "Variation ofsoilsubgrade modulus under circular foundation", J. Al-Azhar Univ. Eng. Sector, 17(63), 549-556.   DOI
20 Al Kaisy, A., Esmaeel, R.A. and Nassar, M.M. (2007), "Application of the differential quadrature method to the longitudinal vibration of non-uniform rods", Eng. Mech., 14(5), 303-310.
21 Farhatnia, F., Saadat, R. and Oveissi, S. (2019), "Functionally graded sandwich circular plate of non-uniform varying thickness with homogenous core resting on elastic foundation: Investigation on bending via differential quadrature method", Am. J. Mech. Eng., 7(2), 68-78.   DOI
22 Abdelbaki, B., Sayed-Ahmed, M. and Al-Kaisy, A. (2021), "Axisymmetric bending of FGM circular plate with parabolically-varying thickness resting on a non-uniform two-parameter partial foundation by DQM", Adv. Dyn. Syst. Appl., 16(2), 1393-1413.
23 Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.   DOI
24 Birman, V. (2011), Plate Structures, Springer Science & Business Media.
25 Hamzehkolaei, S., Malekzadeh, P. and Vaseghi, J. (2011), "Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM", Steel Compos. Struct., 11(4), 341-358. https://doi.org/10.12989/scs.2011.11.4.341.   DOI
26 Wu, T., Wang, Y. and Liu, G. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Meth. Appl. Mech. Eng., 191(46), 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2.   DOI
27 Liew, K., Han, J.B. and Xiao, Z. (1997), "Vibration analysis of circular Mindlin plates using the differential quadrature method", J. Sound Vib., 205(5), 617-630. https://doi.org/10.1006/jsvi.1997.1035.   DOI
28 Prakash, T. and Ganapathi, M. (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos. Part B: Eng., 37(7-8), 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005.   DOI
29 Senjanovic, I., Hadzic, N., Vladimir, N. and Cho, D.S. (2014), "Natural vibrations of thick circular plate based on the modified Mindlin theory", Arch. Mech., 66(6), 389-409.
30 Sharma, S., Srivastava, S.and Lal, R. (2011), "Free vibration analysis of circular plate of variable thickness resting on Pasternak foundation", J. Int. Acad. Phys. Sci., 15, 1-13.
31 Zhou, D., Lo, S., Au, F. and Cheung, Y. (2006), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3-5), 726-741. https://doi.org/10.1016/j.jsv.2005.08.028.   DOI