• Title/Summary/Keyword: Gate Electrode

Search Result 282, Processing Time 0.037 seconds

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Improvement of Geometrical Structure of Cr-Gate Electrode in Mo-tip Field Emitter Array (몰리브덴 팁 전계 방출 소자에 있어서 크롬 게이트 전극 구조의 개선)

  • Ju, Byeong-Kwon;Kim, Hoon;Seo, Sang-Won;Lee, Yun-Hi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.532-535
    • /
    • 2001
  • The sputtering condition of Cr thin film was established in order to get Cr gate electrode having a vertical wall structure for Mo-tip FEA. In case of Mo-tip FEA which had a vertically-etched Cr gate electrode, the field enhancement factor, was relatively increased and so the field emission performance in terms of turn-on voltage, emission current and trans-conductance could be improved when compared with the devices having a tapered gate wall.

  • PDF

Gate Leakage Current Characteristics of GaAs MESFETs with Different Temperature (GaAs MESFET의 온도변화에 대한 게이트누설전류 특성)

  • Won, Chang-Sub;Hong, Jea-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.24-27
    • /
    • 2003
  • In this paper, We make experiment on two methode for GaAs MESFET with temperature variation. One method, we mesure gate leakage current at open source electrode. another we mesure gate leakage current at short source electrode. The difference of two current has been tested and provide that the existence of another source to Schottky barrier height against the image force lowering effect.

  • PDF

A Study on the Change of Electrical Characteristics in the EST(Emitter Switched Thyristor) with Trench Electrodes (EST(Emitter Switched Thyristor) 소자의 트랜치 전극에 의한 특성 변화 연구)

  • 김대원;성만영;강이구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • In this paper. a new two types of EST(Emitter Switched Thyristor) structures are proposed to improve the electrical characteristics including the current saturation capability. Besides, the two dimensional numerical simulations were carried out using MEDICI to verify the validity of the device and examine the electrical characteristics. First, a vortical trench electrode EST device is proposed to improve snap-back effect and its blocking voltage. Second, a dual trench gate EST device is proposed to obtain high voltage current saturation characteristics and high blocking voltage and to eliminate snap-back effect. The two proposed devices have superior electrical characteristics when compared to conventional devices. In the vertical trench electrode EST, the snap-back effect is considerably improved by using the vertical trench gate and cathode electrode and the blocking voltage is one times better than that of the conventional EST. And in the dual trench gate EST, the snap-back effect is completely removed by using the series turn-on and turn-off MOSFET and the blocking voltage is one times better than that of the conventional EST. Especially current saturation capability is three times better than that of the other EST.

The variation of C-V characteristics of thermal oxide grown on SiC wafer with the electrode formation condition (SiC 열산화막의 Electrode형성조건에 따른 C-V특성 변화)

  • Kang, M.J.;Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.354-357
    • /
    • 2002
  • Thermally grown gate oxide on 4H-SiC wafer was investigated. The oxide layers were grown at l150$^{\circ}C$ varying the carrier gas and post activation annealing conditions. Capacitance-Voltage(C-V) characteristic curves were obtained and compared using various gate electrode such as Al, Ni and poly-Si. The interface trap density can be reduced by using post oxidation annealing process in Ar atmosphere. All of the samples which were not performed a post oxidation annealing process show negative oxide effective charge. The negative oxide effective charges may come from oxygen radical. After the post oxidation annealing, the oxygen radicals fixed and the effective oxide charge become positive. The effective oxide charge is negative even in the annealed sample when we use poly silicon gate. Poly silicon layer was dope by POCl$_3$ process. The oxide layer may be affected by P ions in poly silicon layer due to the high temperature of the POCl$_3$ doping process.

  • PDF

Characteristics of Mo Gate Electrode Deposited on ZrO2 Gate Insulator (ZrO2 게이트 절연막 위에 증착된 Mo 게이트 전극의 특성)

  • Kang, Young-Sub;An, Jea-Hong;Kim, Jae-Young;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.120-124
    • /
    • 2005
  • In this work, MOS capacitors were used to study the electrical properties of Mo gate electrode deposited on ZrO$_2$. The workfunctions of Mo gate extracted from C-V curves were appropriate for PMOS. Thermal stability of Mo metal was investigated by analyzing the variations of workfunction and EOT(effective oxide thickness) after 600, 700, and 800 $^{\circ}C$ RTA(rapid thermal annealing). It was found that Mo gate was stable up to 800 $^{\circ}C$ with underlying ZrO$_2$. The resistivities of Mo were 35$\mu$$.$cm∼ 75$\mu$$.$cm. These values are lower than those of heavily doped polysilicon. Based on these measurements, it can be concluded that Mo metal gate with ZrO$_2$ gate insulator is an excellent gate material for PMOS.

A Study on Processing of TFT Electrodes for Digital Signage Display using a Reverse Offset Printing (리버스옵셋 프린팅을 이용한 디지털 사이니지 디스플레이용 TFT 전극 형성 공정 연구)

  • Yoon, Sun Hong;Lee, Junsang;Lee, Seung Hyun;Lee, Bum-Joo;Shin, Jin-Koog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.497-504
    • /
    • 2014
  • The digital signage display is actively researched as the next generation of large FPD. To commercialize those digital signage display, the manufacturing cost must be downed with printing method instead of conventional photolithography. Here, we demonstrate a reverse offset printed TFT electrodes for the digital signage display. For the fabricated source/drain and gate electrode, we used Ag ink, silicone blanket, Clich$\acute{e}$ and reverse offset printer. We printed uniform TFT electrode patterns with narrow line width(10 ${\mu}m$ range) and thin thickness(nm range). In the end the printing source/drain and gate electrode are successfully achieved by optimization of experimental conditions such as Clich$\acute{e}$ surface treatment, ink coating process, delay time, off/set process and curing temperature. Also, we checked that the printing align accuracy was within 5 ${\mu}m$.

A study on the dielectric characteristics improvement of gate oxide using tungsten policide (텅스텐 폴리사이드를 이용한 게이트 산화막의 절연특성 개선에 관한연구)

  • 엄금용;오환술
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.43-49
    • /
    • 1997
  • Tungsten poycide has studied gate oxide reliability and dielectric strength charactristics as the composition of gate electrode which applied submicron on CMOS and MOS device for optimizing gate electrode resistivity. The gate oxide reliability has been tested using the TDDB(time dependent dielectric breakdwon) and SCTDDB (stepped current TDDB) and corelation between polysilicon and WSi$_{2}$ layer. iN the case of high intrinsic reliability and good breakdown chracteristics on polysilicon, confirmed that tungsten polycide layer is a better reliabilify properities than polysilicon layer. Also, hole trap is detected on the polysilicon structure meanwhile electron trap is detected on polycide structure. In the case of electron trap, the WSi$_{2}$ layer is larger interface trap genration than polysilicon on large POCL$_{3}$ doping time and high POCL$_{3}$ doping temperature condition. WSi$_{2}$ layer's leakage current is less than 1 order and dielectric strength is a larger than 2MV/cm.

  • PDF

The Wet and Dry Etching Process of Thin Film Transistor (박막트랜지스터의 습식 및 건식 식각 공정)

  • Park, Choon-Sik;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1393-1398
    • /
    • 2009
  • Conventionally, etching is first considered for microelectronics fabrication process and is specially important in process of a-Si:H thin film transistor for LCD. In this paper, we stabilize properties of device by development of wet and dry etching process. The a-Si:H TFTs of this paper is inverted staggered type. The gate electrode is lower part. The gate electrode is formed by patterning with length of 8 ${\mu}$m${\sim}$16 ${\mu}$m and width of 80${\sim}$200 ${\mu}$m after depositing with gate electrode (Cr) 1500 ${\AA}$under coming 7059 glass substrate. We have fabricated a-SiN:H, conductor, etch-stopper and photo resistor on gate electrode in sequence, respectively. The thickness of these thin films is formed with a-SiN:H (2000 ${\mu}$m), a-Si:H(2000 ${\mu}$m) and n+a-Si:H (500 ${\mu}$m), We have deposited n-a-Si:H, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-stopper pattern. The NPR layer by inverting pattern of upper gate electrode is patterned and the n+a-Si:H layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. In the fabricated TFT, the most frequent problems are over and under etching in etching process. We were able to improve properties of device by strict criterion on wet, dry etching and cleaning process.

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF