• 제목/요약/키워드: Gate Dielectrics

검색결과 166건 처리시간 0.026초

Remote O2 plasma functionalization for integration of uniform high-k dielectrics on large area synthesized few-layer MoSe2

  • Jeong, Jaehun;Choi, Yoon Ho;Park, Dambi;Cho, Leo;Lim, Dong-Hyeok;An, Youngseo;Yi, Sum-Gyun;Kim, Hyoungsub;Yoo, Kyung-Hwa;Cho, Mann?Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.281.1-281.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDCs) are promising layered structure materials for next-generation nano electronic devices. Many investigation on the FET device using TMDCs channel material have been performed with some integrated approach. To use TMDCs for channel material of top-gate thin film transistor(TFT), the study on high-k dielectrics on TMDCs is necessary. However, uniform growth of atomic-layer-deposited high-k dielectric film on TMDCs is difficult, owing to the lack of dangling bonds and functional groups on TMDC's basal plane. We demonstrate the effect of remote oxygen plasma pretreatment of large area synthesized few-layer MoSe2 on the growth behavior of Al2O3, which were formed by atomic layer deposition (ALD) using tri-methylaluminum (TMA) metal precursors with water oxidant. We investigated uniformity of Al2O3 by Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). Raman features of MoSe2 with remote plasma pretreatment time were obtained to confirm physical plasma damage. In addition, X-ray photoelectron spectroscopy (XPS) was measured to investigate the reaction between MoSe2 and oxygen atom after the remote O2 plasma pretreatment. Finally, we have uniform Al2O3 thin film on the MoSe2 by remote O2 plasma pretreatment before ALD. This study can provide interfacial engineering process to decrease the leakage current and to improve mobility of top-gate TFT much higher.

  • PDF

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • 이효영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

Electronic and Optical Properties of amorphous and crystalline Tantalum Oxide Thin Films on Si (100)

  • Kim, K.R.;Tahir, D.;Seul, Son-Lee;Choi, E.H.;Oh, S.K.;Kang, H.J.;Yang, D.S.;Heo, S.;Park, J.C.;Chung, J.G.;Lee, J.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.382-382
    • /
    • 2010
  • $TaO_2$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility in achieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFETchannel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. The atomic structure of amorphous and crystalline Tantalum oxide ($TaO_2$) gate dielectrics thin film on Si (100) were grown by utilizing atomic layer deposition method was examined using Ta-K edge x-ray absorption spectroscopy. By using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy (REELS) the electronic and optical properties was obtained. In this study, the band gap (3.400.1 eV) and the optical properties of $TaO_2$ thin films were obtained from the experimental inelastic scattering cross section of reflection electron energy loss spectroscopy (REELS) spectra. EXAFS spectra show that the ordered bonding of Ta-Ta for c-$TaO_2$ which is not for c-$TaO_2$ thin film. The optical properties' e.g., index refractive (n), extinction coefficient (k) and dielectric function ($\varepsilon$) were obtained from REELS spectra by using QUEELS-$\varepsilon$(k, $\omega$)-REELS software shows good agreement with other results. The energy-dependent behaviors of reflection, absorption or transparency in $TaO_2$ thin films also have been determined from the optical properties.

  • PDF

Band alignment and optical properties of $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ gate dielectrics thin films on p-Si (100)

  • Tahir, D.;Kim, K.R.;Son, L.S.;Choi, E.H.;Oh, S.K.;Kang, H.J.;Heo, S.;Chung, J.G.;Lee, J.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.381-381
    • /
    • 2010
  • $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility inachieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFET channel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric films on p-Si (100) were grown by atomic layer deposition method, for which the conduction band offsets, valence band offsets and band gapswere obtained by using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. The band gap, valence and conduction band offset values for $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric thin film, grown on Si substrate were about 5.34, 2.35 and 1.87 eV respectively. This band alignment was similar to that of $ZrO_2$. In addition, The dielectric function (k, $\omega$), index of refraction n and the extinction coefficient k for the $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films were obtained from a quantitative analysis of REELS data by comparison to detailed dielectric response model calculations using the QUEELS-$\varepsilon$(k, $\omega$)-REELS software package. These optical properties are similar with $ZrO_2$ dielectric thin films.

  • PDF

Au 나노 입자를 이용한 floating gate memory에서 $SiO_2$ or SiON 터널링 게이트 산화막의 영향 (Effects of $SiO_2$ or SiON tunneling gate oxide on Au nano-particles floating gate memory)

  • 구현모;이우현;조원주;구상모;정홍배;이동욱;김재훈;이민성;김은규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.67-68
    • /
    • 2006
  • Floating gate non-volatile memory devices with Au nano-particles embedded in SiON or $SiO_2$ dielectrics were fabricated by digital sputtering method. The size and the density of Au are 4nm and $2{\times}10^{-12}cm^{-2}$, respectively. The floating gate memory of MOSFET with 5nm tunnel oxide and 45nm control oxide have been fabricated. This devices revealed a memory effect which due to proGrainming and erasing works perform by a gate bias stress repeatedly.

  • PDF

Omega 형태의 게이트를 갖는 ZnO 나노선 FET에 대한 연구 (A study for omega-shaped gate ZnO nanowire FET)

  • 김기현;강정민;윤창준;정동영;김상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1297-1298
    • /
    • 2006
  • Omega-shaped-gate (OSG) nanowire-based field effect transistors (FETs) have been attracted recently attention due to their highdevice performance expected from theoretical simulations among nanowire-based FETs with other gate geometries. OSG FETs with the channels of ZnO nanowires were successfully fabricated in this study with photolithographic processes. In the OSG FETs fabricated on oxidized Si substrates, the channels of ZnO nanowires with diameters of about 60 nm are coated surroundingly by $Al_{2}O_{3}$ as gate dielectrics with atomic layer deposition. About 80 % of the surfaces of the nanowires coated with $Al_{2}O_{3}$ is covered with gate metal to form OSG FETs. A representative OSG FET fabricated in this study exhibits a mobility of 98.9 $cm^{2}/Vs$, a peak transconductance of 0.4 ${\mu}S$, and an Ion/Ioff ratio of $10^6$ the value of the Ion/Ioff ratio obtained from this OSG FET is the highest among nanowire-based FETs, to our knowledge. Its mobility, peak transconductance, and Ion/Ioff ratio arc remarkably enhanced by 11.5, 32, and $10^6$ times, respectively, compared with a back-gate FET with the same ZnO nanowire channel as utilized in the OSG FET.

  • PDF

Hysteresis-free organic field-effect transistors with ahigh dielectric strength cross-linked polyacrylate copolymer gate insulator

  • Xu, Wentao;Lim, Sang-Hoon;Rhee, Shi-Woo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.48.1-48.1
    • /
    • 2009
  • Performance of organic field-effect transistors (OFETs) with various temperature-cured polyacrylate(PA) copolymer as a gate insulator was studied. The PA thin film, which was cured at an optimized temperature, showed high dielectric strength (>7 MV/cm), low leakage current density ($5{\times}10^{-9}\;A/cm^2$ at 1 MV/cm) and enabled negligible hysteresis in MIS capacitor and OFET. A field-effect mobility of ${\sim}0.6\;cm^2/V\;s$, on/off current ratio (Ion/Ioff) of ${\sim}10^5$ and inverse subthreshold slope (SS) as low as 1.22 V/decwere achieved. The high dielectric strength made it possible to scale down the thickness of dielectric, and low-voltage operation of -5 V was successfully realized. The chemical changes were monitored by FT-IR. The morphology and microstructure of the pentacene layer grown on PA dielectrics were also investigated and correlated with OFET device performance.

  • PDF

산소 분압에 따른 산화주석 박막의 전계효과 이동도 변화 분석 (Analysis on the Field Effect Mobility Variation of Tin Oxide Thin Films with Oxygen Partial Pressure)

  • 마대영
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.350-355
    • /
    • 2014
  • Bottom-gate tin oxide ($SnO_2$) thin film transistors (TFTs) were fabricated on $N^+$ Si wafers used as gate electrodes. 60-nm-thick $SnO_2$ thin films acting as active layers were sputtered on $SiO_2/Al_2O_3$ films. The $SiO_2/Al_2O_3$ films deposited on the Si wafers were employed for gate dielectrics. In order to increase the resistivity of the $SnO_2$ thin films, oxygen mixed with argon was introduced into the chamber during the sputtering. The mobility of $SnO_2$ TFTs was measured as a function of the flow ratio of oxygen to argon ($O_2/Ar$). The mobility variation with $O_2/Ar$ was analyzed through studies on crystallinity, oxygen binding state, optical properties. X-ray diffraction (XRD) and XPS (X-ray photoelectron spectroscopy) were carried out to observe the crystallinity and oxygen binding state of $SnO_2$ films. The mobility decreased with increasing $O_2/Ar$. It was found that the decrease of the mobility is mainly due to the decrease in the polarizability of $SnO_2$ films.

원자층 증착을 이용한 고 유전율 Al2O3 절연 박막 기반 Indium Zinc 산화물 트랜지스터의 저전압 구동 (Low-Voltage Driving of Indium Zinc Oxide Transistors with Atomic Layer Deposited High-k Al2O3 as Gate Dielectric)

  • 엄주송;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.432-436
    • /
    • 2017
  • IZO transistors with $Al_2O_3$ as gate dielectrics have been investigated. To improve permittivity in an ambient dielectric layer, we grew $Al_2O_3$ by atomic layer deposition directly onto the substrates. Then, we prepared IZO semiconductor solutions with 0.1 M indium nitrate hydrate [$In(NO_3)_3{\cdot}xH_2O$] and 0.1 M zinc acetate dehydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] as precursor solutions; the IZO solution made with a molar ratio of 7:3 was then prepared. It has been found that these oxide transistors exhibit low operating voltage, good turn-on voltage, and an average field-effect mobility of $0.90cm^2/Vs$ in ambient conditions. Studies of low-voltage driving of IZO transistors with atomic layer-deposited high-k $Al_2O_3$ as gate dielectric provide data of relevance for the potential use of these materials and this technology in transparent display devices and displays.

Device and Circuit Performance Issues with Deeply Scaled High-K MOS Transistors

  • Rao, V. Ramgopal;Mohapatra, Nihar R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권1호
    • /
    • pp.52-62
    • /
    • 2004
  • In this paper we look at the effect of Fringe-Enhanced-Barrier-lowering (FEBL) for high-K dielectric MOSFETs and the dependence of FEBL on various technological parameters (spacer dielectrics, overlap length, dielectric stack, S/D junction depth and dielectric thickness). We show that FEBL needs to be contained in order to maintain the performance advantage with scaled high-K dielectric MOSFETs. The degradation in high-K dielectric MOSFETs is also identified as due to the additional coupling between the drain-to-source that occurs through the gate insulator, when the gate dielectric constant is significantly higher than the silicon dielectric constant. The technology parameters required to minimize the coupling through the high-K dielectric are identified. It is also shown that gate dielectric stack with a low-K material as bottom layer (very thin $SiO_2$ or oxy-nitride) will be helpful in minimizing FEBL. The circuit performance issues with high-K MOS transistors are also analyzed in this paper. An optimum range of values for the dielectric constant has been identified from the delay and the energy dissipation point of view. The dependence of the optimum K for different technology generations has been discussed. Circuit models for the parasitic capacitances in high-K transistors, by incorporating the fringing effects, have been presented.