Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.7.432

Low-Voltage Driving of Indium Zinc Oxide Transistors with Atomic Layer Deposited High-k Al2O3 as Gate Dielectric  

Eom, Ju-Song (College of Electrical and Computer Engineering, Chungbuk National University)
Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.7, 2017 , pp. 432-436 More about this Journal
Abstract
IZO transistors with $Al_2O_3$ as gate dielectrics have been investigated. To improve permittivity in an ambient dielectric layer, we grew $Al_2O_3$ by atomic layer deposition directly onto the substrates. Then, we prepared IZO semiconductor solutions with 0.1 M indium nitrate hydrate [$In(NO_3)_3{\cdot}xH_2O$] and 0.1 M zinc acetate dehydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] as precursor solutions; the IZO solution made with a molar ratio of 7:3 was then prepared. It has been found that these oxide transistors exhibit low operating voltage, good turn-on voltage, and an average field-effect mobility of $0.90cm^2/Vs$ in ambient conditions. Studies of low-voltage driving of IZO transistors with atomic layer-deposited high-k $Al_2O_3$ as gate dielectric provide data of relevance for the potential use of these materials and this technology in transparent display devices and displays.
Keywords
Indium zinc oxide transistors; High-k $Al_2O_3$; Atomic layer deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimental, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater., 17, 590 (2005). [DOI: https://doi.org/10.1002/adma.200400368]   DOI
2 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https:// doi.org/10.1038/nature03090]   DOI
3 F. Jaehnike, D. V. Pham, R. Anselmann, C. Bock, and U. Kunze, ACS Appl. Mater. Interfaces, 7, 14011 (2015). [DOI: https://doi.org/10.1021/acsami.5b03105]   DOI
4 M. K. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 90, 212114 (2007). [DOI: https://doi.org/10.1063/1.2742790]   DOI
5 M. Rockelé, D. V. Pham, J. Steiger, S. Botnaras, D. Weber, J. Vanfleteren, T. Sterken, D. Cuypers, S. Steudel, K. Myny, S. Schols, B. van de Putten, J. Genoe, and P. Heremans, J. Soc. Inf. Disp., 20, 499 (2012). [DOI: https://doi.org/10.1002/jsid.114]   DOI
6 J. M. Ball, P. H. Wobkenberg, F. Colleaux, M. Heeney, J. E. Anthony, I. McCulloch, D.D.C. Bradley, and T. D. Anthopoulos, Appl. Phys. Lett., 95, 103310 (2009). [DOI: https://doi.org/10.1063/1.3212736]   DOI
7 P. H. Wobkenberg, J. Ball, F. B. Kooistra, J. C. Hummelen, D. M. de Leeuw, D.D.C. Bradley, and T. D. Anthopoulos, Appl. Phys. Lett., 93, 013303 (2008). [DOI: https://doi.org/10.1063/1.2954015]   DOI
8 M. Benwadih, J. A. Chroboczek, G. Ghibaudo, R. Coppard, and D. Vuillaume, J. Appl. Phys., 115, 214501 (2014). [DOI: https://doi.org/10.1063/1.4880163]   DOI
9 H. U. Li and T. N. Jackson, IEEE Electron Device Lett., 36, 35 (2015). [DOI: https://doi.org/10.1109/led.2014.2371011]   DOI
10 X. Yu, J. Smith, N. Zhou, L. Zeng, P. Guo, Y. Xia, A. Alvarez, S. Aghion, H. Lin, J. Yu, R.P.H. Chang, M. J. Bedzyk, R. Ferragut, T. J. Marks, and A. Facchetti, Proc. Natl. Acad. Sci. U.S.A., 112, 3217 (2015). [DOI: https://doi.org/10.1073/pnas.1501548112]   DOI
11 J. Socratous, K. K. Banger, Y. Vaynzof, A. Sadhanala, A. D. Brown, A. Sepe, U. Steiner, and H. Sirringhaus, Adv. Funct. Mater., 25, 1873 (2015). [DOI: https://doi.org/10.1002/adfm.201404375]   DOI
12 Z. Qi, J. Cao, H. Li, L. Ding, and J. Wang, Adv. Funct. Mater., 25, 3138 (2015). [DOI: https://doi.org/10.1002/adfm.201500525]   DOI
13 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987). [DOI: https://doi.org/10.1063/1.98799]   DOI
14 D. Platz, E. A. Tholén, D. Pesen, and D. B. Haviland, Appl. Phys. Lett., 92, 153106 (2008). [DOI: https://doi.org/10.1063/1.2909569]   DOI
15 J. Tardy, M. Erouel, A. L. Deman, A. Gagnaire, V. Teodorescu, M. G. Blanchin, B. Canut, A. Barau, and M. Zaharescu, Microelectron. Reliab., 47, 372 (2007). [DOI: https://doi.org/10.1016/j.microrel.2006.01.012]   DOI
16 G. Adamopoulos, S. Thomas, P. H. Wobkenberg, D.D.C. Bradley, M. A. McLachlan, and T. D. Anthopoulos, Adv. Mater., 23, 1894 (2011). [DOI: https://doi.org/10.1002/adma.201003935]   DOI
17 A. Hardy, S. Van Elshocht, C. Adelmann, T. Conard, A. Franquet, O. Douheret, I. Haeldermans, J. D'Haen, S. D. Gendt, M. Caymax, M. Heyns, M. D'Olieslaeger, M.K.V. Bael, and Thin Solid Films, 516, 8343 (2008). [DOI: https://doi.org/10.1016/j.tsf.2008.04.017]   DOI
18 S. Clima, G. Pourtois, A. Hardy, S. Van Elshocht, M. K. Van Bael, S. De Gendt, D. J. Wouters, M. Heyns, and J. A. Kittl, J. Electrochem. Soc., 157, G20 (2010). [DOI: https://doi.org/10.1149/1.3253583]   DOI
19 J. H. Park, K. Kim, Y. B. Yoo, S. Y. Park, K. H. Lim, K. H. Lee, H. K. Baik, and Y. S. Kim, J. Mater. Chem. C, 1, 7166 (2013). [DOI: https://doi.org/10.1039/C3TC 31589D]   DOI
20 N. Avci, P. F. Smet, J. Lauwaert, H. Vrielinck, and D. Poelman, J. Sol-Gel Sci. Technol., 59, 327 (2011). [DOI: https://doi.org/10.1007/s10971-011-2505-9]   DOI
21 J. Sheng, H. J. Lee, S. Oh, and J. S. Park, ACS Appl. Mater. Interfaces, 8, 33821 (2016). [DOI: https://doi.org/10.1021/acsami.6b11774]   DOI
22 C. Y. Koo, K. Song, T. Jun, D. Kim, Y. Jeong, S. H. Kim, J. Ha, and J. Moon, J. Electrochem. Soc., 157, J111 (2010). [DOI: https://doi.org/10.1149/1.3298886]   DOI