• Title/Summary/Keyword: Gas Separation

Search Result 1,001, Processing Time 0.043 seconds

Development of Solid Separator for Selective Solid Circulation in Two-interconnected Fluidized Beds System (2탑 유동층 시스템에서 선택적 고체순환을 위한 고체분리기 개발)

  • Ryu, Ho-Jung;Park, Young Cheol;Lee, Seung-Yong;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.195-202
    • /
    • 2009
  • As a basic research of developing two-interconnected fluidized beds system for selective solid circulation, a solid separator was developed to separate fine and coarse particles by means of particle size difference with particle size separation system equipped with metal screen. The effects of gas velocity, height of solid separator, and separation area on the solid separation rate were investigated as well. The solid separation rate increased as the gas velocity, height of solid separator, and separation area increased. As the gas velocity and height of the solid separator increased, the variation of the solid separation rate was consistent with that of bubble size. Consequently, coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 4.4 to 127 g/min. We also proposed two interconnenced fluidized beds system for sorption enhanced water-gas shift process equipped with the developed solid separator.

A Study on Minimum Separation Distance for Aboveground High-pressure Natural Gas Pipelines (지상 고압 천연가스 배관의 최소 이격거리 기준에 관한 연구)

  • Lee, Jin-Han;Jo, Young-Do
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.225-231
    • /
    • 2019
  • In Korea, the minimum separation distance between aboveground high-pressure natural gas pipeline and buildings is regulated by Korea gas safety (KGS) code. In this paper, The technical backgrounds for the revision of the KGS code related to the minimum separation distance was presented. A consequence-based approach was adopted to determine the minimum separation distance by a reasonable accident scenario, which was a jet fire caused by the rupture of one inch branch line attached the gas pipeline. Where, the higher thermal radiation flux threshold was selected for workers in industrial area than for people in non-industrial area, because the workers in industrial area were able to escape in a shorter time than the people in public. As result of consequence analysis for the accident scenario, we suggested the KGS code revision that the minimum separation distances between high-pressure natural gas pipeline installed above ground and buildings should be 30 meter in non-industrial area and 15 meter in industrial area. The revised code was accepted by the committee of the KGS code and now in effect.

Gas Separation Membranes Prepared from Polystyrene-block-Polybutadiene/Poly(phenylene oxide) Blends for Carbon Dioxide Separation from a Flue Gas (배기가스로부터 이산화탄소 분리를 위한 SB 이종 블록공중합체/즐리페닐렌 옥사이드 블렌드 기체분리막)

  • Jung, You-Sun;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.593-597
    • /
    • 2008
  • To separate carbon dioxide from a flue gas, membranes for gas separation was fabricated from polystyrene-b-polybutadiene (SB) diblock copolymer blends with poly(phenylene oxide), PPO. SB diblock copolymer formed miscible blends with PPO in the experimental range (lower than or equal to 70 wt% PPO). When the blend contained PPO whose composition is in the range of 40-50 wt%, the discontinuous phase of polybutadiene block in SB diblock copolymer, was changed to discrete phase, while polystyrene blocks containing PPO was changed to the continuous phase. A sudden decrease of the gas permeability and a sudden increase of the gas selectivity was observed at these blend compositions. A gas separation membranes having excellent mechanical properties and exhibiting advantages in gas permeability and selectivity could be fabricated from blends containing more than 50 wt% PPO.

A Study on the Optimal Conditions of the Biogas Sorting by Using the Polysulfone Membrane (다공성 분리막을 이용한 최적의 Bio-gas 분리인자 도출)

  • Lee, Seung-Won;Jeong, Chang-Hoon;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1011-1019
    • /
    • 2011
  • The objective of this research is to evaluate optimal conditions of permeability and selectivity on the polysulfone membrane for efficiency of separation of $CH_4$ by checking four factors which are temperature, pressure, gas compositions and gas flow rates. When higher pressure was applied at the input, lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ were shown. It has the tendency to show lower efficiency of recovery of $CH_4$ and higher efficiency of separation of $CH_4$ at the output as higher temperature at input. The lower flow rates make higher efficiency of recovery of $CH_4$ and lower efficiency of separation of $CH_4$. Finally, over 90% efficiency for $CH_4$ separation and recovery conditions are temperature ($-5^{\circ}C$), pressure (8 bar), gas composition rate (6:4) ($CH_4:CO_2$) and gas flow rate ($5\ell$/min). These conditions make higher separation and recovery efficiency such as 90.1% and 92.1%, respectively.

Research Trends of Metal-Organic Framework Membranes: Fabrication Methods and Gas Separation Applications (MOF 분리막의 연구 동향: 합성 방법 및 기체 분리 응용)

  • Lee, Jeong Hee;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.465-477
    • /
    • 2015
  • Recently membrane-based gas separation has attracted a lot of attention due to the growing demands on energy efficient separation processes. Current membrane-based gas separation is dominant by polymer membranes and limited mostly to non-condensable gases rather than condensable gases such as hydrocarbon isomers due to the limitation s of polymer materials. Metal-organic framework (MOF) materials, consisting of metal ions and organic ligands, have received a tremendous attention as membrane materials due to high surface area, controllable pore structure, and functionality. In this review, we provide a recent development of MOF membrane preparation methods and their gas separation applications.

A Study of Interpretation of Separation Behavior in Gas Expansion Separation(GES) Bolt (가스팽창분리형 볼트 분리거동 해석 연구)

  • Lee Young Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • The present work has been developed the study of interpretation of separation behavior in gas expansion separation(GES) bolt which has the separation characteristics without fragmentation and minimum pyre-shock during the operation of the explosive bolt. In order to obtain the performance of minimum pyre-shock, the present work used non-compressive material instead of separation explosives. The use of the interpretation processor could be extensively helped to design the shape and the amount of explosives in the explosive bolt having complex geometry, and to analyse the separation behavior during the operation. It is also proved that the GES bolt is the most suitable the separation system necessary to minimum pyre-shock and non fragmentation compare with others.

Study on the Separation of CO2 from Flue Gas Using Polysulfone Hollow Fiber Membrane (폴리설폰 중공사막을 이용한 연소 배기가스 중 이산화탄소 분리에 관한 연구)

  • Kim, Seongcheon;Chun, Jeonghyeon;Chun, Youngnam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.147-152
    • /
    • 2014
  • In this research, polysulfone hollow fiber membrane was used to recover $CO_2$ which is one of greenhouse gases from flue gas stream being emitted after the combustion of fossil fuels. The prerequisite requirement is to design the membrane process producing high-purity $CO_2$ from flue gas. For separation of $CO_2$, a membrane module and flue gas containing 10% carbon dioxide was used. The effects of operating conditions such as pressure, temperature, feed gas composition and multi-stage membrane on separation performance were examined at various stage cuts. Higher operating pressure and temperature increased carbon dioxide concentration and recovery ratio in permeate. Recovery ratio and separation efficiency increased if a higher content of $CO_2$ injection gas composition. Three-stage membrane system was producing a 95% $CO_2$ with 90% recovery from flue gas. The separation efficiency of three-stage membrane system was higher than one-stage system.

A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane (기체분리용 고분자 멤브레인의 최근 개발 동향)

  • Kim, Tae-Heon;Jeong, Jung-Chae;Park, Jong-Man;Woo, Chang-Hwa
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.267-277
    • /
    • 2010
  • Gas separation membranes have been developed for decades in various areas to replace the conventional processes. Membrane processes for gas separation have many advantages of energy saving, compact size, and easy scale-up. Nowadays, gas separation processes is widely spreaded in nitrogen generating system, hydrogen generating system, membrane dryer, on board inert gas generating system, natural gas purification, biogas purification and fuel cells. Carbon dioxide separation process using membrane would be a strong candidate of carbon dioxide capturing process. In order to broaden the scope of application of gas separation membranes, development of new materials which can overcome the borderline of Robeson's plot should be necessary, so that many researchers and companies are trying to develop the new materials like polymers containing cardo and spiro group and PIMs (polymers for intrinsic microporosity).

Pre-Combustion Capture of Carbon Dioxide Using Principles of Gas Hydrate Formation (가스 하이드레이트 형성 원리를 이용한 연소전 탈탄소화 연구)

  • Lee, Hyun-Ju;Lee, Ju-Dong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.650-654
    • /
    • 2008
  • The emission of carbon dioxide from the burning of fossil fuels has been identified as a major contributor to green house emissions and subsequent global warming and climate changes. For these reasons, it is necessary to separate and recover $CO_2$ gas. A new process based on gas hydrate crystallization is proposed for the $CO_2$ separation/recovery of the gas mixture. In this study, gas hydrate from $CO_2/H_2$ gas mixtures was formed in a semi-batch stirred vessel at a constant pressure and temperature. This mixture is of interest to $CO_2$ separation and recovery in Integrated Coal Gasification (IGCC) plants. The impact of tetrahydrofuran (THF) on hydrate formation from the $CO_2/H_2$ was observed. The addition of THF not only reduced the equilibrium formation conditions significantly but also helped ease the formation of hydrates. This study illustrates the concept and provides the basic operations of the separation/recovery of $CO_2$ (pre-combustion capture) from a fuel gas ($CO_2/H_2$) mixture.

Adsorption Properties of Ca-exchanged Clinoptilolite under Low-temperature (Ca 이온교환 Clinoptilolite의 저온 흡착 특성)

  • Song Taek-Yong;Lee Young-Chul;Baek Young-Soon;Kim Jong-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.36-41
    • /
    • 2004
  • The breakthrough curve was obtained to evaluate separation efficiency of clinoptilolite as an methane/nitrogen separation adsorbent. The Ca-exchanged clinoptilolite showed improved separation efficiency. The nitrogen adsorption capacity of Ca-clinoptilolite was increased with decreasing temperature. The temperature was decreased from 293K to 253K(feed gas flow rate : 670ml/min, pressure : 333kPa). The adsorption capacity is increased with increasing pressure. The pressure was increased from 333kPa to 700kPa(feed gas flow rate : 670ml/min, temperature : 253K, 293K).

  • PDF