Gas Separation Membranes Prepared from Polystyrene-block-Polybutadiene/Poly(phenylene oxide) Blends for Carbon Dioxide Separation from a Flue Gas

배기가스로부터 이산화탄소 분리를 위한 SB 이종 블록공중합체/즐리페닐렌 옥사이드 블렌드 기체분리막

  • Jung, You-Sun (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Chang-Keun (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • 정유선 (중앙대학교 화학신소재공학부) ;
  • 김창근 (중앙대학교 화학신소재공학부)
  • Published : 2008.11.30

Abstract

To separate carbon dioxide from a flue gas, membranes for gas separation was fabricated from polystyrene-b-polybutadiene (SB) diblock copolymer blends with poly(phenylene oxide), PPO. SB diblock copolymer formed miscible blends with PPO in the experimental range (lower than or equal to 70 wt% PPO). When the blend contained PPO whose composition is in the range of 40-50 wt%, the discontinuous phase of polybutadiene block in SB diblock copolymer, was changed to discrete phase, while polystyrene blocks containing PPO was changed to the continuous phase. A sudden decrease of the gas permeability and a sudden increase of the gas selectivity was observed at these blend compositions. A gas separation membranes having excellent mechanical properties and exhibiting advantages in gas permeability and selectivity could be fabricated from blends containing more than 50 wt% PPO.

배기가스에 포함된 이산화탄소를 분리하기 위해 polystyrene-block-polybutadiene(SB) 이종 블록 공중합체와 폴리페닐렌 옥사이드(PPO) 블렌드로부터 기체 분리막을 제조하였다. SB/PPO 블렌드에서 폴리스티렌 블록과 PPO는 실험 범위내에서 단상의 블렌드를 형성하였다. SB/PPO 블렌드에서 PPO 함량이 증가하여 40$\sim$50wt% 범위에서 플리부타디엔 블록은 연속상에서 불연속상으로 플리스티렌 블록과 PPO로 구성된 상은 불연속상에서 연속상으로 전이가 나타났다. 전이가 관찰되는 블렌드 조성에서 급격한 기체 투과도 감소와 선택도 증가가 관찰되었다. 또 블렌드가 50 wt% 이상의 PPO를 포함할 경우 기계적 강도가 확보되어 실험한 최대 압력인 약 10기압까지 변형없이 우수한 투과도와 선택도를 갖는 기체 분리막 제조가 가능하였다.

Keywords

References

  1. H. Herzog, Environ. Sci. Technol., 35, 148 (2001) https://doi.org/10.1021/es000996d
  2. C. M. White, J. Air Waste Manage. Assoc., 53, 645 (2003) https://doi.org/10.1080/10473289.2003.10466119
  3. O. Davidson and B. Metz, 'Special Report on Carbon Dioxide Capture and Storage', in International Panel on Climate Change, Geneva, Switzerland, 2005
  4. J. Davison and K. Thambimuthu, 'Technologies for Capture of Carbon Dioxide', in Proceedings of the Seventh Greenouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme, 2004
  5. D. Aaron and C. Tsouris, Sep. Sci. Technol., 40, 321 (2005)
  6. E. Favre, J. Membrane Sci., 294, 50 (2007)
  7. S. P. Kaldis, G. Skrodas, and G. P. Sakellaropoulos, Fuel Process. Technol., 85, 337 (2004)
  8. D. R. Paul and Y. P. Yampolskii, Polymeric gas separation membranes, D. R. Paul and Y. P. Yampolskii, Editors, CRC Press, Inc., Boca Raton, USA, Chap. 1 and 2 (2000)
  9. L. M. Robeson, J. Membrane Sci., 62, 165 (1991)
  10. L. M. Robeson, J. Membrane Sci., 320, 390 (2008) https://doi.org/10.1016/j.memsci.2008.04.040
  11. W. J. Koros and D. R. Paul, J. Polym. Sci. Part B, 14, 675 (1976)
  12. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Pub., Dordrecht, Netherlands, Chapter 7 (1996)
  13. D. Kinning, K. Winey, and E. Thomas, Macromolecules, 21, 3502 (1983) https://doi.org/10.1021/ma00182a024
  14. P. Cheng, C. Berney, and R. Cohen, Macromolecules, 21, 3442 (1988)
  15. J. M. Hwang, K. H. Lee, and D. C. Lee, Polymer(Korea), 21, 745 (1997)
  16. G. Morel and D. R. Paul, J. Membrane Sci., 10, 273 (1982)
  17. Y. C. Moon and C. K. Kim, Polymer(Korea), 23, 690 (1999)