DOI QR코드

DOI QR Code

MOF 분리막의 연구 동향: 합성 방법 및 기체 분리 응용

Research Trends of Metal-Organic Framework Membranes: Fabrication Methods and Gas Separation Applications

  • 이정희 (경희대학교 화학공학과) ;
  • 김진수 (경희대학교 화학공학과)
  • Lee, Jeong Hee (Department of Chemical Engineering, Kyung Hee University) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University)
  • 투고 : 2015.12.14
  • 심사 : 2015.12.16
  • 발행 : 2015.12.31

초록

최근 에너지 효율이 높은 분리 공정기술의 수요가 증가하면서 분리막을 이용한 기체 분리가 큰 관심을 모으고 있다. 현재 분리막에 의한 기체 분리 시장은 고분자막이 독점하고 있으며, 고분자 재료 물성의 한계로 탄화수소와 같은 응축 기체분리 보다는 비응축 기체 분리에 제한되고 있다. MOF 재료는 금속 이온과 유기 리간드가 결합하여 형성하는 결정성 나노 기공 구조로, 높은 비표면적과 기공 구조 제어, 기능성 부여가 가능해 분리막 재료로 큰 관심을 끌고 있다. 본 총설에서는 다양한 MOF 분리막의 합성 방법과 MOF 분리막을 통한 기체 분리 응용에 대해 살펴보고자 한다.

Recently membrane-based gas separation has attracted a lot of attention due to the growing demands on energy efficient separation processes. Current membrane-based gas separation is dominant by polymer membranes and limited mostly to non-condensable gases rather than condensable gases such as hydrocarbon isomers due to the limitation s of polymer materials. Metal-organic framework (MOF) materials, consisting of metal ions and organic ligands, have received a tremendous attention as membrane materials due to high surface area, controllable pore structure, and functionality. In this review, we provide a recent development of MOF membrane preparation methods and their gas separation applications.

키워드

참고문헌

  1. H. Bux, C. Chmelik, R. Krishna, and J. Caro, "Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion", J. Membr. Sci., 369, 284 (2011). https://doi.org/10.1016/j.memsci.2010.12.001
  2. S. R. Venna and M. A. Carreon, "Highly permeable zeolite imidazolate framework-8 membranes for $CO_2/CH_4$ separation", J. Am. Chem. Soc., 132, 76 (2009).
  3. Y. Liu, Z. Ng, E. A. Khan, H.-K. Jeong, C.B. Ching, and Z. Lai, "Synthesis of continuous MOF-5 membranes on porous ${\alpha}$-alumina substrates", Micropor. Mesopor. Mater., 118, 296 (2009). https://doi.org/10.1016/j.micromeso.2008.08.054
  4. H. T. Kwon and H. K. Jeong, "In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation", J. Am. Chem. Soc., 135, 10763 (2013). https://doi.org/10.1021/ja403849c
  5. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Nature, 402, 276 (1999). https://doi.org/10.1038/46248
  6. Y. Liu, E. Hu, E. A. Khan, and Z. Lai, "Synthesis and characterization of ZIF-69 membranes and separation for $CO_2$/CO mixture", J. Membr. Sci., 353, 36 (2010). https://doi.org/10.1016/j.memsci.2010.02.023
  7. Y. Yoo, Z. Lai, and H. K. Jeong, "Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth", Micropor. Mesopor. Mater., 123, 100 (2009). https://doi.org/10.1016/j.micromeso.2009.03.036
  8. H. T. Kwon and H. K. Jeong, "Highly propylene-selective supported ceolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth", Chem. Commun., 49, 3854 (2013). https://doi.org/10.1039/c3cc41039k
  9. H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, "The chemistry and applications of metal-organic frameworks", Science, 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
  10. Y. Liu, G. Zeng, Y. Pan, and Z. Lai, "Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties", J. Membr. Sci., 379, 46 (2011). https://doi.org/10.1016/j.memsci.2011.05.041
  11. Y. Pan and Z. Lai, "Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions", Chem. Commun., 47, 10275 (2011). https://doi.org/10.1039/c1cc14051e
  12. H. Guo, G. Zhu, I. J. Hewitt, and S. Qiu, "Twin Copper Source" Growth of Metal-Organic Framework Membrane: $Cu_3(BTC)_2$ with High Permeability and Selectivity for Recycling $H_2$", J. Am. Chem. Soc., 131, 1646 (2009). https://doi.org/10.1021/ja8074874
  13. S. Hermes, F. Schroder, R. Chelmowski, C. Woll, and R. A. Fischer, "Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/$CF_3$-terminated self-assembled monolayers on Au (111)", J. Am. Chem. Soc., 127, 13744 (2005). https://doi.org/10.1021/ja053523l
  14. M. N. Shah, M. A. Gonzalez, M. C. McCarthy, and H. K. Jeong, "An unconventional rapid synthesis of high performance metal-organic framework membranes", Langmuir, 29, 7896 (2013). https://doi.org/10.1021/la4014637
  15. D. Nagaraju, D. G. Bhagat, R. Banerjee, and U. K. Kharul, "In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation", J. Mater. Chem. A, 1, 8828 (2013). https://doi.org/10.1039/c3ta10438a
  16. S. Aguado, C.-H. Nicolas, V. Moizan-Basle, C. Nieto, H. Amrouche, N. Bats, N. Audebrand, and D. Farrusseng, "Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards $CO_2$", New J. Chem., 35, 41 (2011). https://doi.org/10.1039/C0NJ00667J
  17. M. Arnold, P. Kortunov, D. J. Jones, Y. Nedellec, J. Karger, and J. Caro, "Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate", Eur. J. Inorganic Chem., 2007, 60 (2007). https://doi.org/10.1002/ejic.200600698
  18. J. A. Bohrman and M. A. Carreon, "Synthesis and $CO_2/CH_4$ separation performance of Bio-MOF-1 membranes" Chem. Commun., 48, 5130 (2012). https://doi.org/10.1039/c2cc31821k
  19. H. T. Kwon, H. K. Jeong, A. S. Lee, H. S. An, and J. S. Lee, "Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/Propane separation performances", J. Am. Chem. Soc., 137, 12304 (2015). https://doi.org/10.1021/jacs.5b06730
  20. S. Zhou, X. Zou, F. Sun, F. Zhang, S. Fan, H. Zhao, T. Schiestel, and G. Zhu, "Challenging fabrication of hollow ceramic fiber supported $Cu_3(BTC)_2$ membrane for hydrogen separation", J. Mater. Chem., 22, 10322 (2012). https://doi.org/10.1039/c2jm16371c
  21. J. Gascon, S. Aguado, and F. Kapteijn, "Manufacture of dense coatings of $Cu_3(BTC)_2$ (HKUST-1) on ${\alpha}$ -alumina", Micropor. Mesopor. Mater., 113, 132 (2008). https://doi.org/10.1016/j.micromeso.2007.11.014
  22. Z. Xie, T. Li, N. L. Rosi, and M. A. Carreon, "Alumina-supported cobalt-adeninate MOF membranes for $CO_2/CH_4$ separation", J. Mater. Chem. A, 2, 1239 (2014). https://doi.org/10.1039/C3TA14058J
  23. Y. C. Pan, W. Liu, Y. J. Zhao, C. Q. Wang, and Z. P. Lai, "Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons", J. Membr. Sci., 493, 88 (2015). https://doi.org/10.1016/j.memsci.2015.06.019
  24. X. Zou, G. Zhu, I. J. Hewitt, F. Sun, and S. Qiu, "Synthesis of a metal-organic framework film by direct conversion technique for VOCs sensing", Dalton Transactions, 3009 (2009).
  25. Y. S. Li, F. Y. Liang, H. G. Bux, W. S. Yang, and J. Caro, "Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation", J. Membr. Sci., 354, 48 (2010). https://doi.org/10.1016/j.memsci.2010.02.074
  26. X. Zou, F. Zhang, S. Thomas, G. Zhu, V. Valtchev, and S. Mintova, "$Co_3(HCOO)_6$ microporous metal-organic framework membrane for separation of $CO_2/CH_4$ mixtures", Chem.-A Eur. J., 17, 12076 (2011). https://doi.org/10.1002/chem.201101733
  27. V. M. Aceituno Melgar, H. T. Kwon, and J. Kim, "Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition", J. Membr. Sci., 459, 190 (2014). https://doi.org/10.1016/j.memsci.2014.02.020
  28. Y. Pan, B. Wang, and Z. Lai, "Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability", J. Membr. Sci., 421-422, 292 (2012). https://doi.org/10.1016/j.memsci.2012.07.028
  29. R. Ranjan and M. Tsapatsis, "Microporous metal organic framework membrane on porous support using the seeded growth method", Chem. Mater., 21, 4920 (2009). https://doi.org/10.1021/cm902032y
  30. H. Bux, F. Y. Liang, Y. S. Li, J. Cravillon, M. Wiebcke, and J. Caro, "Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis", J. Am. Chem. Soc., 131, 16000 (2009). https://doi.org/10.1021/ja907359t
  31. J. Caro and M. Noack, "Zeolite membranes-recent developments and progress", Micropor. Mesopor. Mater., 115, 215 (2008). https://doi.org/10.1016/j.micromeso.2008.03.008
  32. H. Bux, C. Chmelik, J. M. van Baten, R. Krishna, and J. Caro, "Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling", Adv. Mater., 22, 4741 (2010). https://doi.org/10.1002/adma.201002066
  33. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  34. S. H. Kwon and J. W. Rhim, "Facilitated transport separation of carbon dioxide using aminated polyetherimide membranes", Membr. J., 25, 248 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.248
  35. J. H. Lim, C. S. Lee, H. E. Kim, M. W. Bae, Y. G. Mo, and S. Y. Ha, "Separation and simulation for carbon dioxide from flaring gas using poly sulfone hollow fiber membrane", Membr. J., 25, 99 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.99
  36. A. Huang, H. Bux, F. Steinbach, and J. Caro, "Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-Aminopropyltriethoxysilane as covalent linker", Angew. Chem., 122, 5078 (2010). https://doi.org/10.1002/ange.201001919
  37. A. Huang, F. Liang, F. Steinbach, and J. Caro, "Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker", J. Membr. Sci., 350, 5 (2010). https://doi.org/10.1016/j.memsci.2009.12.029
  38. M. C. McCarthy, V. Varela-Guerrero, G. V. Barnett, and H. K. Jeong, "Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures", Langmuir, 26, 14636 (2010). https://doi.org/10.1021/la102409e
  39. X. Zhang, Y. Liu, L. Kong, H. Liu, J. Qiu, W. Han, L. T. Weng, K.L. Yeung, and W. Zhu, "A simple and scalable method for preparing low-defect ZIF-8 tubular membranes", J. Mater. Chem. A, 1, 10635 (2013). https://doi.org/10.1039/c3ta12234d
  40. X. Dong, K. Huang, S. Liu, R. Ren, W. Jin, and Y. Lin, "Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination" J. Mater. Chem., 22, 19222 (2012). https://doi.org/10.1039/c2jm34102f
  41. Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu and Y. M. Lee, "Metal-organic framework membranes fabricated via reactive seeding", Chem. Commun., 47, 737 (2011). https://doi.org/10.1039/C0CC03927F
  42. V. V. Guerrero, Y. Yoo, M. C. McCarthy, and H. K. Jeong, "HKUST-1 membranes on porous supports using secondary growth", J. Mater. Chem., 20, 3938 (2010). https://doi.org/10.1039/b924536g
  43. S. J. Noh, H. T. Kwon, and J. Kim, "Synthesis and characterization of $Cu_3(BTC)_2$ membranes by thermal spray seeding and secondary growth", J. Nanosci. Nanotech., 13, 5671 (2013). https://doi.org/10.1166/jnn.2013.7033
  44. J. Yao, D. Dong, D. Li, L. He, G. Xu, and H. Wang, "Contra-diffusion synthesis of ZIF-8 films on a polymer substrate", Chem. Commun., 47, 2559 (2011). https://doi.org/10.1039/c0cc04734a
  45. V. M. Aceituno Melgar, H. Ahn, J. Kim, and M. R. Othman, "Highly selective micro-porous ZIF-8 membranes prepared by rapid electrospray deposition", J. Ind. Eng. Chem., 21, 575 (2015). https://doi.org/10.1016/j.jiec.2014.03.021
  46. V. M. A. Melgar and J. Kim, "Preparation of crack-free ZIF-7 thin films by electrospray deposition", Membr. J., 23, 278 (2013).
  47. J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastian, C. Casado, and J. Coronas, "Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives", Chem, Mater., 24, 2829 (2012). https://doi.org/10.1021/cm301435j
  48. M. Yu, R. D. Noble, and J. L. Falconer, "Zeolite membranes: microstructure characterization and permeation mechanisms", Accounts of Chemical Research, 44, 1196 (2011). https://doi.org/10.1021/ar200083e
  49. G. Lu, J. D. da Costa, M. Duke, S. Giessler, R. Socolow, R. Williams, and T. Kreutz, "Inorganic membranes for hydrogen production and purification: a critical review and perspective", J. Colloid and Interface Sci., 314, 589 (2007). https://doi.org/10.1016/j.jcis.2007.05.067
  50. L. Fan, M. Xue, Z. Kang, H. Li, and S. Qiu, "Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis", J. Mater. Chem., 22, 25272 (2012). https://doi.org/10.1039/c2jm35401b
  51. Z. Xie, J. Yang, J. Wang, J. Bai, H. Yin, B. Yuan, J. Lu, Y. Zhang, L. Zhou, and C. Duan, "Deposition of chemically modified ${\alpha}$-$Al_2O_3$ particles for high performance ZIF-8 membrane on a macroporous tube", Chem. Commun., 48, 5977 (2012). https://doi.org/10.1039/c2cc17607f
  52. A. Huang, W. Dou, and J. R. Caro, "Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization", J. Am. Chem. Soc., 132, 15562 (2010). https://doi.org/10.1021/ja108774v
  53. A. Huang, Y. Chen, N. Wang, Z. Hu, J. Jiang, and J. Caro, "A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for $H_2$/$CO_2$ separation", Chem. Commun., 48, 10981 (2012). https://doi.org/10.1039/c2cc35691k
  54. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Proceedings of the National Academy of Sci., 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  55. N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, and T. Yamaguchi, "Diffusive separation of propylene/propane with ZIF-8 membranes", J. Membr. Sci., 450, 215 (2014). https://doi.org/10.1016/j.memsci.2013.09.012
  56. D. Liu, X. Ma, H. Xi, and Y. S. Lin, "Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes", J. Membr. Sci., 451, 85 (2014). https://doi.org/10.1016/j.memsci.2013.09.029