Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.465

Research Trends of Metal-Organic Framework Membranes: Fabrication Methods and Gas Separation Applications  

Lee, Jeong Hee (Department of Chemical Engineering, Kyung Hee University)
Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University)
Publication Information
Membrane Journal / v.25, no.6, 2015 , pp. 465-477 More about this Journal
Abstract
Recently membrane-based gas separation has attracted a lot of attention due to the growing demands on energy efficient separation processes. Current membrane-based gas separation is dominant by polymer membranes and limited mostly to non-condensable gases rather than condensable gases such as hydrocarbon isomers due to the limitation s of polymer materials. Metal-organic framework (MOF) materials, consisting of metal ions and organic ligands, have received a tremendous attention as membrane materials due to high surface area, controllable pore structure, and functionality. In this review, we provide a recent development of MOF membrane preparation methods and their gas separation applications.
Keywords
MOF; ZIF; gas separation; hydrogen; carbon dioxide;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 H. Bux, C. Chmelik, R. Krishna, and J. Caro, "Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion", J. Membr. Sci., 369, 284 (2011).   DOI
2 S. R. Venna and M. A. Carreon, "Highly permeable zeolite imidazolate framework-8 membranes for $CO_2/CH_4$ separation", J. Am. Chem. Soc., 132, 76 (2009).
3 Y. Liu, Z. Ng, E. A. Khan, H.-K. Jeong, C.B. Ching, and Z. Lai, "Synthesis of continuous MOF-5 membranes on porous ${\alpha}$-alumina substrates", Micropor. Mesopor. Mater., 118, 296 (2009).   DOI
4 H. T. Kwon and H. K. Jeong, "In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation", J. Am. Chem. Soc., 135, 10763 (2013).   DOI
5 H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Nature, 402, 276 (1999).   DOI
6 Y. Liu, E. Hu, E. A. Khan, and Z. Lai, "Synthesis and characterization of ZIF-69 membranes and separation for $CO_2$/CO mixture", J. Membr. Sci., 353, 36 (2010).   DOI
7 Y. Yoo, Z. Lai, and H. K. Jeong, "Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth", Micropor. Mesopor. Mater., 123, 100 (2009).   DOI
8 H. T. Kwon and H. K. Jeong, "Highly propylene-selective supported ceolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth", Chem. Commun., 49, 3854 (2013).   DOI
9 H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, "The chemistry and applications of metal-organic frameworks", Science, 341, 1230444 (2013).   DOI
10 Y. Liu, G. Zeng, Y. Pan, and Z. Lai, "Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties", J. Membr. Sci., 379, 46 (2011).   DOI
11 Y. Pan and Z. Lai, "Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions", Chem. Commun., 47, 10275 (2011).   DOI
12 H. Guo, G. Zhu, I. J. Hewitt, and S. Qiu, "Twin Copper Source" Growth of Metal-Organic Framework Membrane: $Cu_3(BTC)_2$ with High Permeability and Selectivity for Recycling $H_2$", J. Am. Chem. Soc., 131, 1646 (2009).   DOI
13 S. Hermes, F. Schroder, R. Chelmowski, C. Woll, and R. A. Fischer, "Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/$CF_3$-terminated self-assembled monolayers on Au (111)", J. Am. Chem. Soc., 127, 13744 (2005).   DOI
14 M. N. Shah, M. A. Gonzalez, M. C. McCarthy, and H. K. Jeong, "An unconventional rapid synthesis of high performance metal-organic framework membranes", Langmuir, 29, 7896 (2013).   DOI
15 D. Nagaraju, D. G. Bhagat, R. Banerjee, and U. K. Kharul, "In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation", J. Mater. Chem. A, 1, 8828 (2013).   DOI
16 S. Aguado, C.-H. Nicolas, V. Moizan-Basle, C. Nieto, H. Amrouche, N. Bats, N. Audebrand, and D. Farrusseng, "Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards $CO_2$", New J. Chem., 35, 41 (2011).   DOI
17 M. Arnold, P. Kortunov, D. J. Jones, Y. Nedellec, J. Karger, and J. Caro, "Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate", Eur. J. Inorganic Chem., 2007, 60 (2007).   DOI
18 J. A. Bohrman and M. A. Carreon, "Synthesis and $CO_2/CH_4$ separation performance of Bio-MOF-1 membranes" Chem. Commun., 48, 5130 (2012).   DOI
19 H. T. Kwon, H. K. Jeong, A. S. Lee, H. S. An, and J. S. Lee, "Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/Propane separation performances", J. Am. Chem. Soc., 137, 12304 (2015).   DOI
20 S. Zhou, X. Zou, F. Sun, F. Zhang, S. Fan, H. Zhao, T. Schiestel, and G. Zhu, "Challenging fabrication of hollow ceramic fiber supported $Cu_3(BTC)_2$ membrane for hydrogen separation", J. Mater. Chem., 22, 10322 (2012).   DOI
21 J. Gascon, S. Aguado, and F. Kapteijn, "Manufacture of dense coatings of $Cu_3(BTC)_2$ (HKUST-1) on ${\alpha}$ -alumina", Micropor. Mesopor. Mater., 113, 132 (2008).   DOI
22 Z. Xie, T. Li, N. L. Rosi, and M. A. Carreon, "Alumina-supported cobalt-adeninate MOF membranes for $CO_2/CH_4$ separation", J. Mater. Chem. A, 2, 1239 (2014).   DOI
23 Y. C. Pan, W. Liu, Y. J. Zhao, C. Q. Wang, and Z. P. Lai, "Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons", J. Membr. Sci., 493, 88 (2015).   DOI
24 X. Zou, G. Zhu, I. J. Hewitt, F. Sun, and S. Qiu, "Synthesis of a metal-organic framework film by direct conversion technique for VOCs sensing", Dalton Transactions, 3009 (2009).
25 Y. S. Li, F. Y. Liang, H. G. Bux, W. S. Yang, and J. Caro, "Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation", J. Membr. Sci., 354, 48 (2010).   DOI
26 X. Zou, F. Zhang, S. Thomas, G. Zhu, V. Valtchev, and S. Mintova, "$Co_3(HCOO)_6$ microporous metal-organic framework membrane for separation of $CO_2/CH_4$ mixtures", Chem.-A Eur. J., 17, 12076 (2011).   DOI
27 V. M. Aceituno Melgar, H. T. Kwon, and J. Kim, "Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition", J. Membr. Sci., 459, 190 (2014).   DOI
28 Y. Pan, B. Wang, and Z. Lai, "Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability", J. Membr. Sci., 421-422, 292 (2012).   DOI
29 R. Ranjan and M. Tsapatsis, "Microporous metal organic framework membrane on porous support using the seeded growth method", Chem. Mater., 21, 4920 (2009).   DOI
30 H. Bux, F. Y. Liang, Y. S. Li, J. Cravillon, M. Wiebcke, and J. Caro, "Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis", J. Am. Chem. Soc., 131, 16000 (2009).   DOI
31 J. Caro and M. Noack, "Zeolite membranes-recent developments and progress", Micropor. Mesopor. Mater., 115, 215 (2008).   DOI
32 H. Bux, C. Chmelik, J. M. van Baten, R. Krishna, and J. Caro, "Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling", Adv. Mater., 22, 4741 (2010).   DOI
33 W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation", Membr. J., 25, 373 (2015).   DOI
34 S. H. Kwon and J. W. Rhim, "Facilitated transport separation of carbon dioxide using aminated polyetherimide membranes", Membr. J., 25, 248 (2015).   DOI
35 J. H. Lim, C. S. Lee, H. E. Kim, M. W. Bae, Y. G. Mo, and S. Y. Ha, "Separation and simulation for carbon dioxide from flaring gas using poly sulfone hollow fiber membrane", Membr. J., 25, 99 (2015).   DOI
36 A. Huang, H. Bux, F. Steinbach, and J. Caro, "Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-Aminopropyltriethoxysilane as covalent linker", Angew. Chem., 122, 5078 (2010).   DOI
37 A. Huang, F. Liang, F. Steinbach, and J. Caro, "Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker", J. Membr. Sci., 350, 5 (2010).   DOI
38 M. C. McCarthy, V. Varela-Guerrero, G. V. Barnett, and H. K. Jeong, "Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures", Langmuir, 26, 14636 (2010).   DOI
39 X. Zhang, Y. Liu, L. Kong, H. Liu, J. Qiu, W. Han, L. T. Weng, K.L. Yeung, and W. Zhu, "A simple and scalable method for preparing low-defect ZIF-8 tubular membranes", J. Mater. Chem. A, 1, 10635 (2013).   DOI
40 X. Dong, K. Huang, S. Liu, R. Ren, W. Jin, and Y. Lin, "Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination" J. Mater. Chem., 22, 19222 (2012).   DOI
41 Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu and Y. M. Lee, "Metal-organic framework membranes fabricated via reactive seeding", Chem. Commun., 47, 737 (2011).   DOI
42 V. V. Guerrero, Y. Yoo, M. C. McCarthy, and H. K. Jeong, "HKUST-1 membranes on porous supports using secondary growth", J. Mater. Chem., 20, 3938 (2010).   DOI
43 S. J. Noh, H. T. Kwon, and J. Kim, "Synthesis and characterization of $Cu_3(BTC)_2$ membranes by thermal spray seeding and secondary growth", J. Nanosci. Nanotech., 13, 5671 (2013).   DOI
44 J. Yao, D. Dong, D. Li, L. He, G. Xu, and H. Wang, "Contra-diffusion synthesis of ZIF-8 films on a polymer substrate", Chem. Commun., 47, 2559 (2011).   DOI
45 V. M. Aceituno Melgar, H. Ahn, J. Kim, and M. R. Othman, "Highly selective micro-porous ZIF-8 membranes prepared by rapid electrospray deposition", J. Ind. Eng. Chem., 21, 575 (2015).   DOI
46 V. M. A. Melgar and J. Kim, "Preparation of crack-free ZIF-7 thin films by electrospray deposition", Membr. J., 23, 278 (2013).
47 J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastian, C. Casado, and J. Coronas, "Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives", Chem, Mater., 24, 2829 (2012).   DOI
48 M. Yu, R. D. Noble, and J. L. Falconer, "Zeolite membranes: microstructure characterization and permeation mechanisms", Accounts of Chemical Research, 44, 1196 (2011).   DOI
49 G. Lu, J. D. da Costa, M. Duke, S. Giessler, R. Socolow, R. Williams, and T. Kreutz, "Inorganic membranes for hydrogen production and purification: a critical review and perspective", J. Colloid and Interface Sci., 314, 589 (2007).   DOI
50 L. Fan, M. Xue, Z. Kang, H. Li, and S. Qiu, "Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis", J. Mater. Chem., 22, 25272 (2012).   DOI
51 Z. Xie, J. Yang, J. Wang, J. Bai, H. Yin, B. Yuan, J. Lu, Y. Zhang, L. Zhou, and C. Duan, "Deposition of chemically modified ${\alpha}$-$Al_2O_3$ particles for high performance ZIF-8 membrane on a macroporous tube", Chem. Commun., 48, 5977 (2012).   DOI
52 A. Huang, W. Dou, and J. R. Caro, "Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization", J. Am. Chem. Soc., 132, 15562 (2010).   DOI
53 A. Huang, Y. Chen, N. Wang, Z. Hu, J. Jiang, and J. Caro, "A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for $H_2$/$CO_2$ separation", Chem. Commun., 48, 10981 (2012).   DOI
54 K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Proceedings of the National Academy of Sci., 103, 10186 (2006).   DOI
55 N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, and T. Yamaguchi, "Diffusive separation of propylene/propane with ZIF-8 membranes", J. Membr. Sci., 450, 215 (2014).   DOI
56 D. Liu, X. Ma, H. Xi, and Y. S. Lin, "Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes", J. Membr. Sci., 451, 85 (2014).   DOI