• 제목/요약/키워드: Galois

검색결과 199건 처리시간 0.024초

A Development of Self Learning Material for Mathematics Teachers' Understanding Galois Theory (수학교사의 갈루아 이론 이해를 위한 자립연수자료 개발)

  • Shin, Hyunyong
    • Communications of Mathematical Education
    • /
    • 제31권3호
    • /
    • pp.279-290
    • /
    • 2017
  • This study proposes a self learning material for understanding the key contents of Galois theory. This material is for teachers who have learned algebraic structures like group, field, and vector space which are related with Galois theory but do not clearly understand how algebraic structures are related with the solvability of polynomials and school mathematics. This material is likely to help them to overcome such difficulties. Even though proposed material is used mainly for self learning, the teachers may be helped once or twice by some professionals. In this article, two expressions 'solvability of polynomial' and 'solvability of equation' have the same meaning and 'teacher' means in-service mathematics teacher.

Construction of Digital Logic Systems based on the GFDD (GFDD에 기초한 디지털논리시스템 구성)

  • Park Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제9권8호
    • /
    • pp.1774-1779
    • /
    • 2005
  • This paper propose the design method of the constructing the digital logic systems over galois fields using by the galois field decision diagram(GFDD) that is based on the graph theory. The proposed design method is as following. First of all, we discuss the mathematical properties of the galois fields and the basic properties of the graph theory. After we discuss the operational domain and the functional domain, we obtain the transformation matrixes, $\psi$GF(P)(1) and $\xi$GF(P)(1), in the case of one variable, that easily manipulate the relationship between two domains. And we extend above transformation matrixes to n-variable case, we obtain $\psi$GF(P)(1) and $\xi$GF(P)(1). We discuss the Reed-Muller expansion in order to obtain the digital switching functions of the P-valued single variable. And for the purpose of the extend above Reed-Muller expansion to more two variables, we describe the Kronecker product arithmetic operation.

TORSION POINTS OF ELLIPTIC CURVES WITH BAD REDUCTION AT SOME PRIMES II

  • Yasuda, Masaya
    • Bulletin of the Korean Mathematical Society
    • /
    • 제50권1호
    • /
    • pp.83-96
    • /
    • 2013
  • Let K be a number field and fix a prime number $p$. For any set S of primes of K, we here say that an elliptic curve E over K has S-reduction if E has bad reduction only at the primes of S. There exists the set $B_{K,p}$ of primes of K satisfying that any elliptic curve over K with $B_{K,p}$-reduction has no $p$-torsion points under certain conditions. The first aim of this paper is to construct elliptic curves over K with $B_{K,p}$-reduction and a $p$-torsion point. The action of the absolute Galois group on the $p$-torsion subgroup of E gives its associated Galois representation $\bar{\rho}_{E,p}$ modulo $p$. We also study the irreducibility and surjectivity of $\bar{\rho}_{E,p}$ for semistable elliptic curves with $B_{K,p}$-reduction.

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • 제20권4호
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

Pointless Form of Rough Sets

  • FEIZABADI, ABOLGHASEM KARIMI;ESTAJI, ALI AKBAR;ABEDI, MOSTAFA
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.549-562
    • /
    • 2015
  • In this paper we introduce the pointfree version of rough sets. For this we consider a lattice L instead of the power set P(X) of a set X. We study the properties of lower and upper pointfree approximation, precise elements, and their relation with prime elements. Also, we study lower and upper pointfree approximation as a Galois connection, and discuss the relations between partitions and Galois connections.

Low Complexity Systolic Montgomery Multiplication over Finite Fields GF(2m) (유한체상의 낮은 복잡도를 갖는 시스톨릭 몽고메리 곱셈)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Galois field arithmetic is important in error correcting codes and public-key cryptography schemes. Hardware realization of these schemes requires an efficient implementation of Galois field arithmetic operations. Multiplication is the main finite field operation and designing efficient multiplier can clearly affect the performance of compute-intensive applications. Diverse algorithms and hardware architectures are presented in the literature for hardware realization of Galois field multiplication to acquire a reduction in time and area. This paper presents a low complexity semi-systolic multiplier to facilitate parallel processing by partitioning Montgomery modular multiplication (MMM) into two independent and identical units and two-level systolic computation scheme. Analytical results indicate that the proposed multiplier achieves lower area-time (AT) complexity compared to related multipliers. Moreover, the proposed method has regularity, concurrency, and modularity, and thus is well suited for VLSI implementation. It can be applied as a core circuit for multiplication and division/exponentiation.

MATHIEU GROUP COVERINGS AND GOLAY CODES

  • Yie, Ik-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • 제39권2호
    • /
    • pp.289-317
    • /
    • 2002
  • We associate binary codes to polynomials over fields of characteristic two and show that the binary Golay codes are associated to the Mathieu group polynomials in characteristics two. We give two more polynomials whose Galois group in $M_{12}$ but different self-orthogonal binary codes are associated. Also, we find a family of $M_{24}$-coverings which includes previous ones.