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MATHIEU GROUP COVERINGS AND GOLAY CODES

IxkkwonN YIE

ABSTRACT. We associate binary codes to polynomials over fields of
characteristic two and show that the binary Golay codes are asso-
ciated to the Mathieu group polynomials in characteristic two. We
give two more polynomials whose Galois group is M2 but different
self-orthogonal binary codes are associated. Also, we find a family
of Mss-coverings which includes previous ones.

1. Introduction

Let k be a field of characteristic two. In [1] Abhyankar proved that
the Galois group Gal(F, k(X)) of the polynomial F = Y2 4+ XY3 +1
over the rational function field k(X)) is isomorphic to Mas, where M,
is the Mathieu group of degree n. In [3] and [4] Abhyankar and Yie
proved that for F = YF +T =YX+ XY*+Y + T, fip = f1o(Y) =
YR24+YO4LY44Y24Y, and fos = fou(Y) = Y2 4+Y84+YO1Y, the Galois
groups Gal(F,k(X,T)), Gal(fia+ X, k(X)), and Gal(fay + X, k(X)) are
isomorphic to May, Mia, and Aut(Mis), respectively. The polynomials
F, fiz~+ X, and foq + X give unramified coverings of the affine line over
k, and F gives unramified covering of the affine line over k(X ). In order
to get a suitable upper bound for the Galois groups, they use so called
the “Linearization Process” to obtain the following.

AF — Y2048 +X16Y256 4 XQBylZS + X64Y32 +X10Y8
+XY*+ X8Y2i4y
=0 (mod F),
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AF — Y2048 +X16Y256 +X96y128 + ){64};32 + X10Y8
+ XY+ X%Y?24+Y
+ [T64Y512 —|—X8T16Y32 —|—T8Y16 + T16YS
+ XS4T32 724 X872 4 T
=0 (mod F),

Apporx = Y2048 | (X + 1)64 (X + 1)12”—512 | x32y256
+[(X +1)32 + (X + DY L x3(x 4 1)12y™
+ (X + 1)+ 1Y% 4 XX + 1)8y1

HX + D+ (X + DPYE 4+ (X DM+ 1y
XDy X X X2 X X4 X
0 (mod faq + X).

In the first page summary of {1], it was bricefly mentioned that the
binary Golay code Gog can be constructed from the cyclotomic polyno-
mial Y22 —1 and that such a construction together with the linearization
process of F' tells us that Galois group Gal(F, k(X)) is a subgroup of the
group of automorphisms of Go3, which is isomorphic to Ms3z. In Section
2, we set up the notation and extend this idea further to associate lin-
ear codes to polynomials over fields of positive characteristic. Then we
prove that the codes related to F and F' are a3 and Gos (the extended
binary Golay code), respectively.

In Section 3, we give a sufficient condition under which the Golay
code Go3 is associated to a certain type of degree 23 polynomials over
Fy. Then we prove that the code related to foq + X is again Goy. We
used the complete factorization of fay over Faqii. The factorization is
done by the algebra package MAPLE V.

In Section 4, we consider two polynomials Y12+ Y10 1 y6 y41y L X
and Y24+ Y04+ Y84 ¥v6 1 Y44 Y2+ Y + X in k(X)[Y] and prove that
their splitting fields over k(X) coincide and that their Galois group is
M12.

In Section 5, we consider the family of degree 24 polynomials

Y# 402y (U4 VO YR VY XY VY24 Y + T

We apply the linearization process to this family and display the result
in Appendix. Note that this family includes all so far known Mathieu
group polynomials of degree 24 (except the one appears in Section 4) as
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special cases. We prove that some subfamilies of this has Galois group
Moy,

Though Abhyankar’s conjecture has been proved, the structure of the
algebraic fundamental group of the affine line is still a mystery. Thus, as
a beginning, it would be interesting to find certain family of unramified
coverings of the affine line and study how these coverings are intertwined
together.

2. Codes associated to polynomials

LemMA 2.1. Let ¢ be a primitive 23rd root of 1 in Foy. Let ¢ :
F2® — Fyu be the linear transform defined by mapping the standard
basis vector e; to ¢*. Then the nullspace N of ¢ is the Golay code Gas.

Proof. Since {¢* | i = 0,1,...,22} generates Fou1 as an Fy vector
space, the nullspace NV is of dimension 12. It is obvious that N is in-
variant under the ¢yclic shift e; — e;4+1 of the basis vectors. Hence N is
a binary cyclic [23,12] code, which is probably the easiest definition of
Go3- U

Generalizing the idea of Lemma 2.1, we give another way of describing
linear codes and extended codes and we associate a linear code to an
arbitrary polynomial over a finite field.

DESCRIPTION 1. We regard a pair (V, B) of m-dimensional vector
space V over Fy and a set of vectors B = {b1,...,b,} as linear g-ary
code as follows: Consider the linear transform ¢ : Fj — V defined by
mapping the standard basis vectors e; to b;. Then the nullspace N of
@ is a g-ary linear code. A homomorphism of a code (V, B) into a code
(V',B') is a linear transformation of V into V' which maps U(B) into
U(B'), where U(B) is the union of 1-dimensional subspaces of V' spanned
by b;’s.

Two codes (V, B) and (V’, B') are said to be equivalent if there is an
isomorphism between them, i.e., if there is an invertible linear transfor-
mation of V onto V’, which is a homomorphism of codes. If V = V' and
B’ is obtained by shuffling the order of vectors in B, then the two codes
(V, B) and (V'/, B') are obviously equivalent.

In most cases below, B generates V. In fact, if we replace V by the
subspace V' generated by B, then the two codes (V, B) and (V’, B) are
the same code in the usual sense, i.e., the nullspace N of ¢ as in the 1
does not change upon the change of V' as long as B is contained in V.
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If B generates V, then the code is an [n,n—m] code. A codeword is a
linear combination of vectors in B which becomes 0, and its weight is the
number of vectors in the combination whose coeflicient is not zero. Thus
the minimum weight is the least number of vectors involved in a linear
relation among the vectors in B. For example, the minimum weight is
1if and only if 0 € B; 2 if and only if 0 € B and B has two distinct
vectors which are scalar multiples of each other. Thus if no vector in B
is a scalar multiple of another vector in B, then the minimum weight is
at least 3.

DESCRIPTION 2. Suppose a code (V, B) is given as in Description 1.
Suppose V is a vector space containing V' as a proper subspace. Fix a
vector b1y € V \ V and consider the set B = {b,+1}U {b; = b; +bpy |
1 < i < n}. Then the code (V, B) is the extended code of (V, B).

To see this, consider the linear mappings ¢ : Fj' — V' as in Description
1 and ¢ : Ftt — V defined by ¢(&;) = b;, where {& | 1 <i < n+1}
is the standard basis for ]F”“*‘1 Let C and C be the nullspaces of ¢ and
@, respectively. Then clearly we have that _1 z;8; € C if and only if
S, zie; € C and E?_Jrll x; = 0.

DESCRIPTION 3. Let k be a field of characteristic p and ¢ be a power
of p. Suppose a polynomial f € k[Y] is given. Fix a splitting field V' of
f over k and let B be the set of roots of f in V.Ifk= IFq, then we take
V = V. Otherwise, we take V to be the F g-Subspace of 1% generated by
B. The g-ary linear code (V, B) is uniquely determined by f. We will
denote this code by Cy.

THEOREM 2.2. Let L be the splitting field of Ap over Fy(X). Let V
be the set of roots of Ap in L and B the set of roots of F in L. Let L
be the splitting field of A over Fo(X, T). Let V be the vector subspace
generated by the roots of A in L and B be the set of roots of F' in L.
Then Cr = (V, B) is the Golay code Gag and Cz = (V, B) is the Golay
code Gog.

Proof. Let R be the local ring obtained by localizing the integral
closure of A = Fo[X] in L at a prime ideal lying above X A. Then
clearly we have B € V C R. Let # be the residue class map of R.
Since y(F) = Y2 + 1 and v(Ap) = Y2 4V, the vector space V is
mapped onto Fyin and B is mapped onto {¢*}. By Lemma 2.1, (V, B) is
isomorphic to the Golay code Gos.
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Now let R be the local ring obtained by localizing the integral closure
of A = Fo(X)[T] in L at a prime ideal lying above T'/A. Then clearly
we have B C V ¢ R. Let % be the residue class map of R. Since
3(F) = YF and 4(Az) = Ar, the vector space V is mapped onto V and
B is mapped onto B U {0}.

There is exactly one root by € B such that 7(bg) = 0. Let us denote
the roots of F' by by, by, ...,bss and consider the set By = {b; = b; — by |
1 < ¢ < 23}. Then B, is bijectively mapped onto B by 4 and generates
a subspace Vp of V which is again bijectively mapped onto V. Namely,
(Vb, Bo) is isomorphic to (V, B) as codes. It is clear from Description
2 that (V,B) is the extended code of (Vo,Bg). Therefore (V,B) is

isomorphic to the Golay code Gaoy. O

3. An ad hoc construction of Golay code.

In this section we prove that the code Cy,, 4+ x is again Goyg. First, we
need the following.

LeMMA 3.1. Let p be an odd prime such that ®,(Y) = };__1 is
irreducible in Fo[Y]. Let f be an irreducible polynomial of degree p
in Fo[Y]. Then the only possible Fo-linear relation among the roots

1,r1,79,...,7p of (Y +1)f is
ri+ro+--+rp,=0 or I,

according as the term YP~! is absent or present in f.

Proof. Let V be the power set of P = {1,2,...,p}. Then we can
think of V' as a vector space over Fy with the symmetric difference as
its vector addition. Note that the singleton subsets form a basis for V.

Consider the obvious action of p-cycle ¢ = (1,2,...,p) on V. Since
®(Y) is irreducible over Fg, there are exactly two nontrivial invariant
subspaces under this action, i.e., W1 = Span(P) and W,_1 = Span({i, i+
1}, i=1,...,p~1).

Now number the roots so that r? =14y fori=1,2,...,p— 1 and
r, = r1. Note that then we have r,(;) = ¢(r;), where ¢ is the Frobenious
automorphism of Fg». Clearly, the subspace W = {S €V | >7,. g7 = 0}
of V' is invariant under the action of o. If W contained Wj,_;, then f
would have had a single p-fold root. Thus W is either W1, in which case
we have 7y 72+ -+ +7p = 0, or the trivial subspace, in which case we
have ry +rg+ -+ 7, = 1.

2
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Suppose ) ;g 7; = 1 for some nonempty subset S of P. Let S’ = ¢5.
Then 3 iegismi = YiiesTi + DliesTi = DoiesTi T #(3iesmi) = 0.
Hence S+ 5" € W. Since S + 5’ has an even number of elements, this
can happen only if S+ .9 is empty. Thus § = 5’ = P. O

The irreducibility condition on ®,(Y") is necessary. For example, take
p=7and f=Y"+Y +1. If ais aroot of f, then & and a? + « are
also roots of f. Note that ®7(Y) = (Y2 + Y + 1)(Y3 + Y2 +1).

LEMMA 3.2. Let p > 5 be a prime such that ®,(Y") is irreducible in
Fa[Y]. Let ¢1(Y) and go(Y) be distinct irreducible polynomials of degree
pin Fo[Y] and let f = (Y + 1)g1(Y)g2(Y). Then one of the followings
holds.

1. The minimum weight of the codc C; Is bigger than 3.
2. The code Cy has precisely p codewords of weight 3.

Proof. Since f does not have any multiple roots, the minimum weight
d of Cs is at least 3. And d = 3 if and only if f has three roots whose
sum is zero. In order to prove the theorem, it is enough to show that if
d = 3, then C; has precisely p codewords of weight 3. Thus for the rest
of the proof, we assume d = 3.

Suppose that ro + r; + ro is a codeword, i.e., rg, 7y, 72 are roots of f
such that 7o +r1 + o = 0. There are two cases. Namely, either (1) 1 is
among 7o, 71,2, or (2) 1 is not among rp,r1,72. In view of Lemma 3.1,
we may assume that, in case (1), 7o = 1 and ¢1(r1) = ga(rz) = 0, or in
case (2) we may assume that g1(rg) = 0 and ga(r1) = ga(r2) = 0.

We first show that the two cases cannot occur simultaneously. Sup-
pose that rg + 71 + 2 and sp + 81 + s2 are two codewords such that
To — 1, gl(rl) = gg(’f'g) = 0, 91(30) = 0, and 92(81) = g2($2) = (. Then
we have sg = r{ for some i = 0,1,...,p — 1. Since r3 +r§ + 73 =
(ro +mr1 + 7"2)2L = 0, we have 1 + 7“%2 + 51 4 §9 = 0. Since p > 5, there
can’t be such a relation between roots of go(Y") by Lemma 3.1.

Now we fix a codeword rg + r1 + ro of weight 3 and let sg + 81 + s2
be any codeword of weight 3. Suppose we are in case (1). That is,
ro = s0 = 1, g1(r1) = g1(s1) = 0, and go(rz) = ga(s2) = 0. We
have s1 = r} and sy = r3 for some i,j = 0,1,...,p — 1. Then we
have 0 = (1 + 71 + 72)% + (50 + 51 + 82) = r5 + 3. Thus we have
i = j. It follows that, in Case (1), any codeword of weight 3 is of
the form ¢*(ro +71 +73), i = 0,1,...,p — 1, where ¢ is the Frobenius
automorphism of For. Hence there are precisely p codewords of weight
3.
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Suppose now we are in case (2). That is, g1(ro) = g1(so) = 0, and
92(r1) = g2(r2) = g2(51) = ga(s2) = 0. We have s = r2 for some
t=0,1,...,p— 1. Similarly as above, we have s; + s9 + ¥+ ng =
Since p > 5, in view of Lemma 3.1, we must have s; = _r%z and so = r2'
(or 53 = r3 and sy = r§'). Hence there are precisely p codewords of
weight 3.

Therefore, if d = 3, there are precisely p codewords of weight 3 in
either cases. O

Note that @1, is irreducible over F5. Applying these two lemmas to
the case when p = 11, we have the following.

THEOREM 3.3. Let ¢1(Y') and g2(Y') be distinct irreducible polyno-
mials of degree 11 in Fo[Y] and let f = (Y + 1)g;1(Y)g2(Y). Suppose
that Cy has doubly even dual code. Then one of the followings holds.

1. = .
2. i"fhe vg:i:;ht enumerator for the dual code Ct+ of C ¢ Is given by
Wei(z,y) = 2* + 555%* + 3302158
+ 14862y + 16527y + 112520,
Proof. By Lemma 3.1, we know that the roots of f gencrates Fou as
a vector space over [Fo. Hence Cy is a binary [23, 12]-code, the minimum

weight d > 3, and the dual code C* is a binary [23,11]-code. The doubly
even code C1 has weight enumerator of the form

WCJ_ (fL‘, y) = 9323 + A4:c19y4 + Ag.’L’lByS
+ A12m11y12 + A15m7y16 -+ A20m3y20.
Moreover, in the ‘usual sense’ of linear codes, C* is a subspace of Cf and

the unique vector of weight 23 belongs to C; but not to C~. Therefore
we have

We(z,y) = Wou(z,y) + Wes (. 2).

Especially, Agg is the number of weight 3 codewords in Cy. On the other
hand, we have MacWilliam'’s identity

1
Weo(z,y) = smWele+y.z—y)

Solving these equations, we obtain

Ag = 5t, Ag =506 — 16t, A;9 = 1288 + 182, A5 =253 —8t, Ayy =1t
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Thus if d = 3, then by Lemma 3.2 we have Asg = 11 and
Wei(z,y) = 22 + 55z%* + 33021548
+ 14862 y*2 + 1652 316 4 11234%°.
If d > 3, then we have Ay = 0 and
We, (z,y) = 2° + 25320y + 5062'5y® + 1288z'%y"!
+ 12882 912 + 50628y + 25327y16 4 422

But this weight enumerator is that of the Golay code Gas and by Theorem
5 of [6] we conclude that Cy is Gas. O

REMARK 1. Suppose C; is as in the above theorem and the minimum
weight d = 3. A codeword of weight 3 is always of case (1) as in the
proof of Lemma 3.2. That is, case (2) never occurs if the dual code C*
is doubly even.

REMARK 2. Suppose Cy is as in the above theorem and the minimum
weight d = 3. The extended code C of Cy is a doubly even binary [24,12]-
code. C appears as Es in [7]. Following their notation, we denote by Eaq
a binary [24, 12, 4]-code isomorphic to C. Similarly, by Es3 we denote a
binary [23, 12, 3]-code isomorphic to Cy.

REMARK 3. The group of automorphisms of the codes Fa3 and Eay
are the semidirect products Thg x 511 and 171 X S19, respectively, where
T, is the elementary abelian group of order 2™ and 5, is the symmetric
group of degree n.

THEOREM 3.4. Let L be the splitting field of Ay,,+x over Fo(X). Let
V be the vector subspace generated by the roots of A,,.x in L and B
the set of roots of fas + X in L. Then Cpy i x = (V, B) is the Golay
code Goy.

Proof. Let R be the local ring obtained by localizing the integral
closure of A = Fy[X] in L at a prime ideal lying above X A. Then
clearly we have B C V < R. Let v be the residue class map of R. Since
Y(Afarsx) = Y2 4 Y, the vector space V is mapped onto Fau.

There is exactly one root by € B such that v(bg) = 0. Let us denote
the roots of fas+ X by bg, b1, ..., b3 and consider the sets V = {v—"bo|
vER, Apy,1x(v) =0} and B = {b; =b; ~ by | L <4 <23} Theset V
is in fact a subspace of V and B C V. Clearly, the code (V,B) is the
extended code of (V, B).
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Since v(f2a + X) = fo4, the set B is bijectively mapped onto the
set of roots of fo3 = f%ﬂ by . Note that fog = (Y + 1)f11f{;, where
fu = ﬁT2 and fi; = fil,zfll are irreducible polynomials of degree 11.
Thus by Lemma 3.1, we see that the roots of fag generate Fou1 as an Fa-
vector space. Hence the 11-dimensional Fa-vector space V is generated
by B and is bijectively mapped onto Fgi: by 4. Thus the code (V, B)
is a [23, 12]-code, which is isomorphic to Cy,,. Therefore it is enough to
show that Cy,, is isomorphic to the Golay code Gas.

We will show that the minimum weight of Cp,, is bigger than 3 and
the dual code C* of Cy,, is doubly even. Then the theorem will follow
from Theorem 3.3. We need to find all the roots of fo3 to do this.

We will use the fixed basis {1,7,72,...,7°}, where n € Fou is a root
of the irreducible polynomial Y1 +Y2+1 € Fy[Y]. Then f11(7®+n%) =0
and f1;(n° +n3+n?+n+1) = 0. Thus, we order the roots by, by, ..., bas
of fa3 50 that by = 1, by = (¥ +1°)%, and bis1i = (PP +0°+n’ +n+1)*
fori =10,1,...,10. The matrix A of the linear transform ¢ : 53 — Fou
defined as in Description 1 is given in Figure 1.

i1 0001000001011 00O01010 10
c 0101111001011 0101010110
o 001101110101 111001 0100
0011131001001 10101011010
o 000110 1110101111001 010
o 011000 0111001001111 11 120
o1 0111100100010 10101101
00310011101 1o0000©0001 11000
o100 0110 1110001111090 11 01
600061 9090000100011 1010101
0 00l 1000 01109010011 1 1111

FIGURE 1. The matrix A of ¢

Note that each column of A represents a root of fa3. Apparently,
there is no 0 < i < 10 such that by + b134; = 1. Note also that A is a
parity check matrix of Cy,, as well as a generating matrix of the dual
code C* of Cy,,. From the matrix product A AT given in Figure 2, we
see that each generating codeword of C* is of weight divisible by 4 and
any pair of generating codewords has even number of 1’s at common
coordinates. It follows that C1 is doubly even. In view of Remark 1, we
have that the minimum weight of Cy,, is bigger than 3. O
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8 4 4 4 4 4 4 2 2 2 6
4 12 8 8 6 6 4 6 6 6 6
4 8 12 6 6 6 6 4 6 6 6
4 8 6 12 8 8 4 4 4 4 8
4 6 6 8 12 6 6 4 6 4 8
4 6 6 8 6 12 6 4 6 4 8
4 4 6 4 6 6 12 4 8 4 8
2 6 4 4 4 4 4 8 4 2 4
2 6 6 4 6 6 & 4 12 6 6
2 6 6 4 4 4 4 2 6 8 6
6 6 6 6 6 8 8 4 6 6 12

FIGURE 2. A AT
4, Mathieu group coverings associated with Ey

Let us, at this moment, briefly review the proof of (1.1) in Section 6
of [4] and see how Galois groups act as the groups of automorphisms of
associated codes. If we let X™* be an element of the algebraic closure of
k(X) such that X*? + X* = X, then we have (fi12(Y) + X*)(f12(Y) +
X* + 1). This factorization gives a partition of B into two subsets
By = the roots of f12(Y) + X* and By = the roots of fi12(Y) + X* +
1. The Galois group Gal(fay + X, k(X)) preserves this partition (any
automorphism which sends X* to X*+1 interchanges By and Bs). Since
the splitting fields of fos + X, fio + X, and f12 + X* + 1 over k(X)
coincide, Gal(fi2(Y) + X*, k(X*)) and Gal(f12(Y) + X* + 1, k(X*)) are
subgroups of Gal(f24+X, k(X)) and they stabilize By, Bo. The subgroup
Gal(f12(Y) + X* +1,k(X*, z)), where z is a root of f15(Y) + X*, fixes
one vector in By i.e., z, but in view of (3.2) of [4], Gal(f12(Y) + X* +
1,k(X™*,z)) permutes By transitively. By Theorem 15 in Chapter 10
of [5], Gal(fas + X, k(X)) and Gal(f12 + X* k(X)) are subgroups of
Aut(Goq) = My, which are respectively isomorphic to Aut(Miz) and
Mo,

The key features of the polynomial fi5 + X that make the abhove
observations work are (1) f]; = -7;‘,2;“11 is irreducible in Fao[Y], (2) fas =
(Y + 1) fi1f{; and Cy,, is isomorphic to Gog, (3) foa + X = Y fos + X
can be linearized at 11. (By a linearized polynomial over a field K of
characteristic p we mean a polynomial A € K'Y each term of which has
Y -degree 0 or a power of p. A polynomial H € K[Y] can be linearized at
n if H divides a linearized polynomial Ay of degrec p™. And in such a
case, we call Ay a linearization of H. Since the linearization process is
very much algorithmic in nature and there are enough examples in the
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literature, when we apply the process to a polynomial H we will present
the linearization Ay only without giving lengthy computation in detail.)

Thus, hoping to find a new Mis covering of the affine line which is
strong genus zero (i.e., a covering given by a polynomial of the form
F + X with F € k[Y]), we searched, using Maple V, for irreducible
polynomials h = h(Y) € Fo[Y] of degree 11 such that b’ = A(Y) =
Yh}g_)l"'l remain irreducible. Out of 186 irreducible polynomials of degree
11, only 27 have this property. Among these 27 polynomials, 9 were
found to be in the situation that the dual code of 3 is doubly even

and H can be linearized at 11, where we have let h = (Y 4+ 1)hK and
H = Yh+X. We list these 9 polynomials below in three distinct groups.

THEOREM 4.1. Let k be a field of characteristic 2. Let f11 = f11(Y) =
Y+ + eyt +y+Land fiy = 1Y) =y +y" +4° +y° + 1. Then
the splitting fields of Y f11 + X and Y ff; + X over k(X) coincide. We
have Gal(Y f11 + X, k(X)) = Mi2 and Cf and C’Ja are isomorphic to Gog,

where _fz fu¥ fu+1) and J?* = (Y fi; +1).

Proof. Note that Y f35 + X +1 = (Y +1)f11(Y +1)+X. The theorem
immediately follows from Section 6 of [4] and Theorem 3.4. (N

THEOREM 4.2. Let k be a field of characteristic 2. Let g = g(Y) =
yH e+’ + P+t +land " = gt (V) =y + P T+ H Pty + L
Then the splitting fields of Yg + X and Yg* + X over k(X) coincide.
We have Gal(Yg + X, k(X)) = Mz and C; and Cy- are isomorphic to
Eps, where g = g(Yg+1) and g* = ¢g"(Yg~ + 1).

Proof. Since g and g* are irreducible over Fo, Galois groups of Y g+.X
and Y¢g* + X over Fy(X) have cycles of length 11, and hence they are
2-transitive subgroups of the symmetric group Si12 of degree 12. Upto
isomorphism, there are six 2-transitive groups, S)2, the alternating group
A2, M1z, and My;(12) — the Mathieu group of degree 11 acting 3-
transitively on 12 letters, PGL(2,11) and PSL(2,11). If we let & be an
algebraic closure of k, then Gal(Yg + X, k(X)) is a normal subgroup of
Gal(Yg + X,F2(X)). Since each group in the list of possible Gal(Y'g +
X,Fy(X)) is simple or almost simple, Gal(Yg + X, k(X)), and hence
Gal(Yg+ X, k(X)) also, must stay in the same list.

Ifwelet ' = (Yg+ X)(Yg*+ X), then I can be linearized at 11 with
the linearization

AF _ Y2048 + (X64 +X16 +X8 +X2 - 1)y1024
+ (X128 +X64. +X32 +X16 +X8 +X2 + 1)Y512
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+ (X724 X0 X2 XT84 X8 4 X2 4 )Y
+ (X128+X96+X66+X64+X48—1—X40+X34
+X32+X18+X10+X8+X2+1)Y128
+(XP+ X+ 1Y
4 (X96 +X72 +X64+X4S+X4O +X34
+ XML X0 X5 X2 )Y
+(X64+X32+X4+X2+1)Y16
—|—(XSO+X72+X68+X66+X64—|—X32—{—X20+X16
+ X2+ X8+ X0+ X%+ )Y
—|—(X72—|—X66+X64+X24—|—X18+X8+X4-I—X2—|—1)Y4
+ (X84 X164 X8 X2 1)Y2 4 (X0 4 X0 X8 4 XYY
+X88 —}—X76 +X65 +X48 +X32 +X28 +X26
+ X+ XM X0+ X% 4 X

Hence we can apply the arguments in Section 6 of {4]. That is, 2-
transitivity of the Galois groups and the linearization together affirm
that the polynomials Yg + X, Y¢* + X, and I' have common splitting
field L.

Among the listed 2-transitive groups of degree 12, My is the only
one that has a subgroup which is not a point stabilizer but is isomorphic
to a point stabilizer as an abstract group, namely, M71(12). (One point
stabilizer of Ms1(12) is isomorphic to PSL(2,11). But PSL(2,11), in
the usual degree 12 action, has an involution which is the product of 6
disjoint transpositions. Since Mi1(12) does not have an element with this
property, PSL(2,11) is a subgroup of Mj1(12) only as a point stabilizer.)

Now let x be a root of Yg + X in the common splitting field. Then
k(X)(x) = k(z) is a rational function field over k. And Gal(L, k(z)),
thought of as a permutation group on the roots of Yg + X, is a point-
stabilizer. Thus Gal(L, k(z)), thought of as a permutation group on the
roots of Yg* + X, must be a point-stabilizer or, in case Gal(L, k(X)) ~
My, possibly the 3-transitive subgroup Mi;(12). In terms of polynomi-
als, this means that Yg¢* + zg(z) is factored into a linear factor and a
factor of degree 11, or is irreducible in which case Gal(L, k(X)) must be
Mis. But by the ‘Factor Theorem’, it is easy to see that Yg*+zg(x) does
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not have a linear factor over the rational function field k(z). Therefore,
we conclude Gal(Yg + X, k(X)) = Ms.

The reason why we cannot apply the arguments in Section 6 of [4]
directly to compute Gal(Y g+ X, k(X)) or Gal(Y ¢*+X, k(X)) separately
is that (Y + 1)g(Y +1) =Yg+ 1 (ditto for g*) and thus if z is a root
of Yg + X then z + 1 is a root of Yg + zg(z) + 1. But, because of the
same reason, we would get C5 = En3, once we prove that the dual code
of G is doubly even. This follows from the complete factorization of g
as in the proof of Theorem 3.4. O

THEOREM 4.3. Let k be a field of characteristic 2 and let h be one of
the following polynomials: Y1 + Y9+ Y7+ Y44+ Y3 +Y2+1, Y1 4V +
YVA4y2 4, YU 4y vS 4+ Y241, Y Y8 YT+ Y34V 4 Y241,
YU+ Y84+ Y4+ Y + 1. We have Gal(Yh + X, k(X)) = S12 and C;, is
isomorphic to Eag, where h = h(Y h + 1).

Proof. We will sketch the proof. By substituting various values for
X in YA+ X and then factoring, we can obtain enough cycle types for
the Galois groups and conclude the Galois group Gal(Yh + X, k(X)) is
either Si or Ai2. Then using the Resultant Criterion in [2], we conclude
the Galois group is indeed Sy2 for each of the polynomials listed above.
From the complete factorization of A, we see that the dual code of C; is
doubly even. Finally, by noting that (Y +1)A(Y +1) = Yh+1 for each
of the polynomial, we conclude C; = Ens. [

5. Large Mathieu group coverings

In this section we will consider the polynomials
F=FUV,XY)
=YB LU B L (U VYT + VY L XYR 4 UVY +1
and
F=FUV,X,TY)
=YH U+ (U VO R VY XY UVYR Y 4T
These polynomials include all the previously known polynomials to which
the linearization process was applied so far as special cases. That is,
F=7(0,0,X,Y), F=7(0,0,X,T,Y), fas + X = F(0,1,0, X,Y"), and
YF*4+ X = F(1,1,0,X,Y). We obtained a linearization of F of degree
21 and present it in Appendix A.
Concerning these polynomials we prove the following.
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THEOREM 5.1. Let U,V be arbitrary elements in k and let X be an

indeterminate over k. Then the equation F = 0 gives an unramified
covering of the affine X-line Ly, over k, with Gal(F, k(X)) = Mas.

THEOREM 5.2. Let U,V be arbitrary elements in k and let X,T be
indeterminates over k. Then the equation 7 = 0 gives an unramified
covering of the affine T-line Ly(x) over k(X), with Gal(F,k(X,T)) =
M24.

If V = 0, then we can drop the condition that X is an indeterminate
over k. That is, if we let

F=FUXY)=YR UYL+ U + XV° +1
and
F=FWUXTY)=Y*+UY® + UV + XY*+V +T
then we have the following.

THEOREM 5.3. Let X be an arbitrary element in k and let U be an
indeterminate over k. The equation F* = 0 gives an unramified covering
of the affine U-line Ly, over k, with Gal(F*, k(U)) = Mas.

THEOREM 5.4. Let U, X be arbitrary elements in k and let T be an
indeterminate over k. Then the equation F = 0 gives an unramified
covering of the affine T-line Ly, over k, with Gal(F , k(T)) = May.

Proof. To prove these Theorems, observe, first of all, that the polyno-
mials in Theorems 5.1, 5.2, 5.4 are irreducible since they are linear in an
indeterminate. Obviously, the Y-discriminants of the polynomials equal
to 1 and hence the polynomials give unramified coverings of appropriate
affine lines (that is, of course if we prove that F* is irreducible).

Now the twisted derivatives of 7 and 7' are given by
F =Y NFW,V,X,T,Y +&) - FU,V,X,T,¢)]
=YR 4+ U+ )Y+ U+ Ve +£0YT
+VYS (X + VY3 UV + V)Y +1
=FU+ LV, X +2V,Y)
and
=y YFWU,X,T,Y + ¢ - F (U X, T8
=YP U+ + P+ €Y+ (X + )Y +1
= F (U + &8, X,Y).
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We put £ to be a root of F (or of ). Then T is a polynomial
in U,V,X,6. Moreover, Gal(F(U + ¢4V, X + &V,Y),k(U,V, X,¢))
and Gal(F*(U + €8,X,Y),k(U, X,€)) are respective point stabilizers
of Gal(F,k(U,V,X,T)) and Gal(F ,k(U,X,T)). If X is an indeter-
minate over k, then Gal(F(U + &4V, X + €2V,Y),k(U,V, X, £)) is iso-
morphic to Gal(F(U+£4,V, X, Y), k(U,V, X, €)) and hence Theorem 5.1
implies Theorem 5.2. If U is an indeterminate over k, then Gal(F*(U +
8.X,Y), kU, X,£)) is isomorphic to Gal(F*(U, X,Y),k(U, X,£)) and
hence Theorem 5.3 and Theorem 5.4 are equivalent.

Assume for a moment that U,V are arbitrary elements of £ and X
is an indeterminate over k. By solving the equation F = 0 for X we
see that the valuation X = oo of k(X) over k splits into two distinct
valuations in k(X ) with respective ramification indices 3 and 20. Thus
F factors into two irreducible factors of degrees 3 and 20 in k((%))[Y]
and hence we see that the order of the Galois group G = Gal(F, k(X))
is divisible by 3 as well as 20. By Burnside’s theorem, G is either a
subgroup of AGL(1,23) (i.e., the group of transformation of type x
ax -+ b of Fa3) or 2-transitive. Since |AGL(1,23)| = 23-22 is not divisible
by 3, G is not a subgroup of AGL(1,23). On the other hand, we see
that G is not Ass or So3 from the linearization of F. In view of the
classification of 2-transitive groups, G must be Ms3. Thus Theorems 5.1
and 5.2 are proved.

Now assume that U, X are arbitrary elements in k& and let T be an
indeterminate over k. Again from the linearization of F we see that
G* = Gal(F",k(T)) is not Apy or Sps. On the other hand, we can
apply the Transitivity Lemma of [3] without any change to get G* is a
2-transitive permutation group of degree 24 whose order is divisible by
7. In view of the classification of 2-transitive groups, G* must be May.
Thus Theorems 5.3 and 5.4 are proved. O

If V=1and U = X?, then we have different Galois group. To see
this, let

Foy = Fou(X,T)Y)
=Y2 L XY (XE )Y YO XY XAYR LY T
and
Fip = Fa(X, T, Y)
=Y XY (X X+ )Y - (X YR+ Y 4T

Then we have the following.
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THEOREM 5.5. Let X be an arbitrary element in k. Then the equa-
tions F24 =0 and F12 = 0 give unramified coverings of the affine T-line
Ly, over k, with Gal(Fay, k(T)) = Aut(Ms) and Gal(Fia, k(T)) = Mis.

Proof. Obviously we have
Pu(X,T*+T,Y) = Fia(X, T, Y) (F12(X, T, Y) + 1),
Foy(X,T,Y) = fas(Y + VX) + T+ X2 + X* + X3 + VX,
FoX,T,Y) = oY + VX) + T+ X8+ X3 + X2+ X + VX.

Thus, for n = 12,24, the Galois group Gal(Fn, (T,v/X)) (which is
obviously isomorphic to Gal(Fy, k(T))) of F,, over the inseparable ex-

tension k(T,v/X) is isomorphic to the previously known Galois group
Gal(f, + T, k(T)). []

Appendix A. The linearization of F

In this section, we present the linearization A of F:

all

A=Y £ 0V + CoY? + GV Y + Y 4+ Cev? 4+ C5YY
L0 L CYE £ YT L OV CY + Oy
The coefficients C1g, Cy, ..., Cy, C—1 are given below:

Cio =V L 108 | x 1680 | (p20 | yrdppd | péypT2 | x2y70 ) prayse | xeByrds |y q30
FULXIOVEE L (U 4 XU 4 T 4 X VR 4 gt xS 4 e
FXSUR L XM 4 rix SV o xTey T IOV L xtpt VR 4 XY

CD =U128V384 + VSOO XJ.SVQTQ + (U-24 + X4U4 + ,Iad)VZG:l + XQVZGZ + U4V248
+XSV24O + v231 + U4X16V220 + (U28 +X4UB +T¢1U4 + X24)V212 o+ U4X2V210
+ (XSU24 a XlQUd +T4XB)V2O4 _[_XLGVQOS +XIDV202
+ (UQQ. + X4U-4 +T4)v19-5 +X2V193 + U4V156 +)&’SV148 + Vl’%Q + U8V104
_'_“ XlGVSS + V'TO + U4V-64 - XEEVGU +X—SV56 + UTQV—.—':Q 4 V-1'T + (Ullﬁ + TB)VA.A
+_¥4V40 . U-Svsfi +X48V32 + (UES _I_ X4U8 +.:[y4[j4)v28 + U-IXZVZ()

+ (X32U24 + X3GU4 + T4X32)V24 _{_ X34 V22 + (XSUQ-I + J\;_-l‘.ZUn-k N ,114 XS)VQU

+ (D—d +X10)V18 + (XlﬁUd.B +X24US + TSJ(IS)VIG +X20‘/.12

+ (U XU TV 4 xBY 4 X2y

+ (U'TZ +X4U5‘2 '|' T4U48 +X8U32 + TSU24 +)(1‘20-]2 +T Y U +TS X-‘LU‘L )V
+ (XU 4 XU 4 AV 4+ (UM £ XBUt e T XV 4 XSVE 4 v

+ TGA "i' UlG + X64UG4 + U3S4
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Cs =V304 + U64V3DD + U64X16V272 + (USB + X4U68 + T(1U64)V26«1 ¥ U64X2V262

- U32V25E| + U4V252 + U68V245 + X8V244 + U64X8V240 + V235 + U64V231

305

+- UGBXIGV”O + (UQ2 + X4U72 +T4U68 + X24U64 + 1)V212 + UGSX‘ZVZICI + U64V2US

+ (XSUSE +X120-68 +T4X8U64)V204 +U64){16V203 +U64X10V202 +USV2ElO

+ (USS -+ X4U-E‘|8 +T4U64)V195 + U-64X2V193 +X64V192 +X16v184 +V166
+X32V156 e U12V148 + (U48 +T8)V140 +X4V136 + UBVIEI +X48V125

+ (U2S +X4U8 +T4U4)V124 +U4X2V122

+(X32U24+X36U4 +T4X32+1)V120+X34V118+(X8U24+X12U4+T4X8)V116
+ (U-4 +X10)V114 + (X16U4S +X24U8 -+ TS_XIG)‘/UQ
+(U192+X32U32+X20+T32)V108+(U24+X4U'1 +T4)V107+X8V106+X2V105

+(U72+X4U—52+T4U4S+XSU32+TSU24+X12U12+T4X8U8+TBX4U4+T12)V104

o

+(X2U48+XIDUB+T8X2)V102 +(X4U..4+XSU4+T4X4)VLOO +XGV98+V97

+ UMY L (2 4 XUt 4 TV g X2V SR

- (X16U192+X48U32+X16U8+T32X16)v80+v7&

+ (U216 +X‘1U196+T4U192+X32U56+_¥36U36 +T4_¥32[/’32 +U32
+T32U24+X4U12 +T4US+T82)(4U4+T38)V72

+(X2U192+X34U32+X2U8+T32X2)V70+(U_196+X32U36+T32U4)V56

+ (XSU192 + U L xp® L xBpf 4 pf m TR XSV L x iyt 4t x ey

+(U192 +X32U32 +T32)V39+X48V36+X24V32

+ (X16U196 +X48U36 +X32U24 + X‘LGU12 +T32_X]5U4 +X36U4 +T4X32)V28

+X34V26 +X16V23 +U4V22

+(U220+X4U200+T4U196+X24UJ92+_X32USD+X16U4S+X36U40
+U36+T4X32U36+X56U32+T32U28+X4U16+T4U12+T32X4U8+T3GU—4
+T8X15+T32X24)V20

+(X2U196+X34U86 _‘_X2U12+T,32X2U4)V18+(U]92+X32U32+X20+T32>V16

+ x5y

+(XSU2IG+X12UIDE+T4XSU192+U72+X40U56+X4U52+T4U<18 +X44U36
LTAxA0RR 82 | PR Bt T8X4U4+T32X12U4+T12+T36X8)V12

+(X16U192+X48U32+X16US+T32XIG)V11

+(X10U192+X2U48+X42U32+T8X2+T32X10)V10

+(X4U24+XEU4 +T4X4)VS+X6V6 +V5

+(U216+X4U190+T4U192+X32U56+X360-35+T4X32U32+U32+T32U24
+X4U1'2+T4US+T32X40-4+T36)V3

2

+(XEUIQZ+X34U32+X2U8+T32-X )V 4 X16

ol :\/—352 + U32V304 + V260 1+ UG4 VQES + U.’SE V252 + U32X8V244 + U16V23(S + U32V235
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+(U96+T16)V208+X32V204+(X4U20+T4UIB+XE)VZUU+U16X2V198+V191
+(X16U32+U20)V184+(XBU16+X48)V176+(X32U.'24 +X36U4 +T11X32+1)V168
+ U16v167 + (U32 + X34)V166 + USGVIGD + (UIOO +X32U32 - U& +T16U4)v156
+(XSU32 +X32U<1)V152+(XBU96+X4U24+T4U20 +X8U4 +TIGX8)V14S
+U20X2Vl46 + (0-16 +X40)V144 +U32V143
+(USU+XSU40+T8U32'+X12U2O+T4X8U16+X16)V140+(U96+U4+T16)V139
+ U16X10V138 4 U32X4V136 -+ X32V135 + (U24 +X4U4 +T4)V132
+(X4U20+T4U-16)v131 +X2V130+U16X2V129+(X48U32+_X-16UH)V128
+ (UGO +X4U40 +T4U36 +X48U4)V124 + (X2U35 + 1)‘/—12.2
+(XSQUSG+X36D—36+U32+T4X32U32+X4U12+T4U8)v120
+ (X34U32 +X2U8)V118
+(XSU56 +X12U3G +T4X3U32 +X32U26 +X36UE +T4X32D-4 +U4 -+ XSG)VIIS
+ (U36 +X10U32 +X34U4)V114 +(X1|3UBU +X24U40 +T8X16U32 ~1_)(I?'Z)‘/rlli!
+ (X20U32 + X40U24 +X44U4 +X8 +T4X'LO)VIDB o+ (USE + X4USG +T4U32 + X4S)VIO7‘
+ (XBU.?.Q + X42)V106 - U32X2V105
+(X4US4+T4U80+XSUG4+TSU56+X12U44+T4XBU(ID+TSX4U36 o T12U32
+U12 +T16U8+X20U4+T4X16)V104
+(X2UBO+X10U4D+T8X2U32+X18)V102+(X4U56 +X8U36+T«1X4U32)V100
+(X32U24+X36U4+T4X32)V99+U32X6V98+(U32+X34)V97+(X3L18+T8)V96
+X4V92+(X16U96 +X32U1l3 +T16X15)V88+X48V84 +(U25+X4UH +T4U4+X24)VBD
+ U4X2V78 - (X32U24 + X16U12 + X36U4 +T4X32)V76 + X34V74
+ (XSUZLI+X12U4+T4XS)V72+(UQE+X16U16+X10+T16)V70
+ (X16U4S +U36 +X4U16 + T4U12 +TBX15)V68 +U12X‘2vﬁ6
+(U192+U100+X16U20+T16U4+X20+T32)V64+X8V62
+(X32U96+U72+X4U52+T4U4S+T8U24+X4S[J16+TSX4U4+T16XS2 +T12)VGD
+U8X16V59+(X2U48+T8X2)V58+(X8U96+X4U-24+X24U15+T16X8+T4X4)V56
+X6V54 +V53 + (UlDS +U16 +T16U12 +XZDU8 +T4X16U4 + X40)V52
+(U32+X4U12+T4U8)V51+U=1X18V50+U8X2V49+(U96+X16U16+T16)V47
+(U144+TBU96+X16U64+U52+T16U&13+X24U24+TSX16U16+X25U4
+T8U4+T24+T4X24)V44
+X32v43 +X26V42 T (X4U96 +X20U]6 +X4U4+T16X4)V4D +X8V39 +U8Xl6V36
+(U104+U12+T16U8+X20U4+T4X16)V35+XIEV33
+ (X48U96 +X(18U4 +T16X4S)V32
+(U124+X4U104 -+ T4U100 +X16U44 +T16U28 +X20U24
+ T4X16U20 + T16X4UB + T20U4)V2B
+ (X2U100 +X18U20 +T16X2U4)V26
+(X32U120+X36U100 +T4X32U96+X48U40 +X32U23 +T16X32(J24+X52U20
+T4X48U16+X36U8+T4X32U4 i T16X36U4+T2DX32)V24
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+ (X34U96 +X50U16 +X34U4 +T16X34.)V22
+(XSU12O+X12U10CI+T4XBU96 +X24U4U+X8U28+T16XBU24 + X28U20+T4X24U16
+X12UB+T4XSU4+TLGX12U4+T20.¥B+.¥32)V20
+U4X15V19+(U100+XJ.OU96+X16U20+'Xv26U15+US+X10U4+TIGU4+T16X10)VIB
+ (X16U144 + X24U104 + TBX16U96 + X32U134 i X16U52 +T16X16U/{S + X4UU24
+TSX32UJ.6+X24U12+T16X24U8+T8X16U4 + T24XLG)V16
+(X20U96+X16U24+X36U16+Iw16X20+T4X16)V12
+(UIZO+X4U100+T4U96+XIGU4D+T160-24+X20UZD+T4X16U16
+T16X4U4+X24+T20)V11
+(XSU96+X24U16+X3U4+X18+T15XS)V10+(X2UQG+XIBU16+T16X2)V9
+(U168+X4U148+T4U144 +;Y8U123+T8U120+.¥12U105+T4XSLTIOA+TEX4U100
+T12U96+X16U88+U75+T16U72+X—ZDO-68+T4X16UG4+X4U55
+T16X4U52+T4U52+X24U4S+T20U4S+T8XLGU4U+X8U36+TIGXBU32
+T8U28+X25U28 +T24U24+T4X24U24 +TSX20U20+X12U16+T12X16U16
+T16X12U12+T4X8U12+T20){SU8+T8.¥4LrE+T24_X‘4U4+T12U4‘+T28)V8
+(X2U144 +X10U104+T8X2U96+X18U64+X2U52+T16X2U48+X26U24
+T8X18U16+X10U12+TJ.GX10US+T8X2U4+T24X2)VB
+(X4U120 +XBU100 +T4X4U96+X20U40+X4U28+T15X4U24+X24U20
+T4X20U16+XBU8+T4X¢U4+TISJX-8U4+T2OX4)V4
+(X8U24+Xl2U~1+T4X8)V3+(X6U96+X22U15+XBU4+T16XS)V2
+ (USB +X16U16 +U4 +T16 n XIO)V +X96

Cs :V234 + ULGVZGD +X16v256 + (U2<1 + X4U4 + T4)V248 + X2V246 -+ U32V236 + U12v220
+V215 + (U48 +T8)V212 + (X16U32 +U2O +X4)V‘208 +U8v203
+ (U!SG +X4U36 +T4U32 +X8U16)V2OU +U32X2V198 +(U2B +X4U8 +T4U4)V196
+ U4x2v194 + V-IDZ + Ul6V191 + (XBU24 +X12U4+T4X8)v1.88 + XlDVISG - U36V18¢
+U8V130 + (U24 +X4U4 +T4)V179 +X2V177+U32X8v176 +U32V167+X16V16«1
+ U4V163 + (U52 + X8U12 + T3U4)V150 + (XIGUSG -+ X4U4)V15!3 T Xavlss
+ (XBU48 +X16U8 +T8JX—5)V152 + (UGD +X4U40 +T4£736 +X24U32 +X12)V14B
+ USGXQVLGB + U32V144 + (Udﬂ +X—EU8 +T8)V143
+ (UQG +X3U56 +X12U36 +T4X8U32 + U4 +T16)V1¢0 + (X16U32 +X4)V13Q
+ U32X10V13B + X32v136 + U8V134 - (UAO + XIIUZO - T4U16)V132
+ (U.‘SG T JY4U36 + T4U32)V131 + U16X2V130 + U—SQXQVJ.ZQ + U24X16V128 + UlGVI'Z:Z
+ (X4U28 -+ T4U24 +XBUS +T8)‘/r120 + (X2U24 +X16)V113 + (U20 +X4)V116
+ (XISUQG +X32U15 +X16U4 +T16X16)V112 + UBVIII “+ UISXSVJ.DS
- (U120 + X4U100 + T4U96 + UZS 4 T,].GU241 + X4UB -+ T16X4U4 + T4U4 +T20)V104
+ (X2U96 +JY2U4 +T16X2)V102 +[.T12_XIG‘/1DU +U—16V99 + (U64 +XSU-24 +T8U16)V96
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4 XIOYO5 L Ay | (168 | ;36 pipyl2 g8 x30yy92 | 12 x2y90

(U004 xIO[20 | plopd o x20yyE L sy 80

T+ (U™ + XU LT TR 4 X8 4 xS L TR XA 4 iy 4 B x 1088

(XU 4 Ut 4 TEX?)YER

+(XPU 4 X6 L xRt pEX IO 4 TR 4 Tixt 4 xO) VR 4 xBTS

J(XB2yA0 4 xR0 TAxERple | 0 4 pax16ppe | xd0yyTE

+(U% + XU 4 THUB VTS (U XU 4 Xt 4 TV L S xR

(U8 4 XS0 L Pt g B0 L TR X120 o pd B g xSRI 4 T8yt
£ TIRUS ¢ x 1672

F (U 4 XU 1 T YT (X206 4 U0 4 XU L TR XPUR 4 x YT

+ (XS L T L x4yt | By 10yl L pdxdpS | Pyt 4 XBpt 4 i x Pty

(XU 4+ XOUR = XUt 4 X2V 4 BV (U 4 x 20018 4 x 1008 1 x AUy yoe

4 xBy8 o 16 x8y02

4 (X600 | 88 L x4r68 | 64 | xSpr8 L pBpra0 b xd 20 | 126

4 X8 LTI xI08  pB xSy 60

+ (U 4 XU £ TEXIO) YO 4 (20U 4 TR XU L X2y 4 x 18y ST

S (XIBUTE L B0 | x20SE | 184 | a0 | x24pp32 o p8 1624 | pd i1
FTRUM 4 xR L pAx sy rRx 20t 4 12 | 712 x 1050

+UBXPY 4 (XIBE 4 XOpE 4 XU 4 TEX 180t | 1By

L (U L xtpi0s L pApI00 | e BAp98 | plBp8 | xeR0p2a L rdprl2 |l xS
+TOU4 § TAX T8 x4 )y

£ (U 4 XU 47U 4 XPUS) YOl 4 (XRUI00 4 18 X2yt X220

+ (XU 4 X0y

(U6 XBUT 4 I8 | 16110 | B B8 L xS6 8 | x3278 | L6y a8

4 x ey

 (XOUIR0 4 X200 plxBy00 | BR8Pl x84 | yaBy2 | plS x 124 | kB
LT XE

(X0 X0yt | pIE xS A L (20798 | 8 | x 104 o 16 x 10y 42

- (COUM L X1 4 XE 4 T Y0 L (U 4 xBTS 4 PR 4 x4E) 00 4 x4yt

(XU 4 xRSy X162t | xFOI6 | e 8212 | 2077 L pdyl6 | S 48y 36

A+ (U0 4 XU 4 T 4 IRt 4 X AUE 4 TR XU 4 TV 4 (M2 4 xSV

+(X2U% 4 T8 X2y

LU 4 XU 4 TS 4 XS TR 4 XM L i x B 4 xR0 4 rexeys
T2 4 x52)yeR

+ (XU 4 XU 4 R X2ty

T (XY 4 X362 | T xRS | Ay L S x 022ty xS s
FTEXPUY L TAXU 4 XSt 4 T X%y

£ (XPUM 4+ XU 4 XUt L T VT 4 (XU 4 xOUt 4 X6 L TS x4y
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+ (U + X1V

+ (X8U72 +X12U52 +T4XBU48 +X16U32 . TSXSU24 +X36U24 +X20U1‘2 +T4X16U8
+T8X12U4+X40U4 +T4X36+T12X8)V24

+(XIGU48 +X24U8 +T8X16)V23

+(U52+X10U48+XBU12+X13U3+T8U4+X38+T8X10)V22

+(X16U96+X48U28+X12[]24 +X32U16+X52U8+X16U4 +T4X48U4
+T4X12+X72+T15X16)V20

+ (X32U32 +X36U12 +T4X32U8 +X20)V19 + (X4U4 +X50U4 +X14)V18

+ (X34U8 +X8)V17+X4SVLG +(XBU4B +X16U8 +T8XS)V14

+(U12D+X4U10l3+T4UQG+X16U4D+X56U24+T16U24+X20U20+T4XIGD-16
+XGOU4 +T16X4U4+T20+X24+T4X56)V12

+X134V11+(X2U96+X18U16+X12+T16X2+X58)v10+V8+(U48+X8U8+T8)V5

+(XHU24+X12U4+T4X8)V4+(X4BU24+X52U4+T4X48)V3+X10V2+(XBD+X4)V

05 =U15V272 +U4V244+X3V236+U1'.2V232+V227 - (U48 +T8)v224 +(U20+X4)V220
+U16x3v212+(U25+X4U8+T4U4)V208+U—4X2V206+UIGVZDE
£ (XPU 4 X120t 4 TAXE) V00 4 101198 | By 192 | (161,180 | 3361176
+(U52 +XBU12 +T5U4)V172 - (U24 +X4U4)V168 + (X8U48 +TBx8)V164 +U12V163
+Xl2v160+vl58+(U32+X4Ul2+T4U8)V156+(U48+T8)V155+USX2V154
(XU phyyieR | xdy el | xByies  (xlep2e | x 20754 | pd 16yq,140
+(U28+X4U8+T4U4)V139+X18V138+U4X21/137+V135+016V134
£ (XPU 4 XUt 4 X)L | x 10120 | 116y B2y 124 | 158128
+(U56+XBU16+T3UB)V120+(u28+X4US)V116+V112+U16VJ.1J.+(UGd+T8U16)VlDB
+(X16U48 +X4U16 - X24U5 +TS‘¥16)VID4 +X20VIDU + (X4U4 +T4)V99 +X2V97
(XU L X2 YIe | Byt 4 (i 4 x APt L pip R0yt o R0 xRy S0 | 8
+ (X320 4 XFOR0 | 6y pax32pIe | a0y 88 | (a8 | Bapl6 | 7By pEs
+(XSU4U +X12U2D +T4X8U16 . X32U12 +XlG)V84 + (UZO +XIDU16 +X4)V82
+(X16Uﬁ4+U52+X24U24 o+ T8X10U16+XBU12 +T8U<Q)VBD+X32V79+U4X16V78
£ (XU 4 X0 LT L TR VTR L (O 4+ XA 4 T VT 4 (P08 4 X YT
+U16X2V73
4 (US® 4 XU £ TAUS 4 TS0 4 X120 4 x8p2 L pE x40 4 pi2pis 4 xleps

+TOX% 4 X3y

-+ (XEU~64 +X1EIU2'L +T8X2U13 +X‘).4)V70
+(X/1Uf10 +X8U20+T4X4U16 +X4BU4+X12)V68+UIGXGVGG+UlEV65+U32VB4
F (U 4 XU Lt X564 0y y00 | R0y59 | (a8 | x32yy86 g8y s
+(X16U52+U40+X4u20+T4U16+X2<1U12+T8X15U4)V—52+(U56+TSU3+X4S)v51
FUMXBYS0 L (x 388 o 3236 | 36116 | ey 8212 | w2070 | p yes)y 48
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+ UBX4V47 + U12X34V46

+(U76+X4U56+T4U52+X24U48+X8U36+TSU28+4¥12U16+T4XBU12+T3X4US
+T12U4+TSX24+X52)V44

+(X32U24+X16U12+X3|3U4+1+T4X32)V43+(X2U52+U16+X10U12 +TBX2U4)v42

!

F(XPRUT2 4 X0 4 x 3652 | pA PR | APy 8 x B2y L x40 4 S x 1612
+XBUB+T8X36U4+T4X4U4+X28+T12X32)Vf10

£ (XHU 4 XOUt g X6 L TE XY ptydT

£ (XPUTE £ XTRUSE § XSOy £ X082 L TE xR 4 X3t | x8yS L x40t
+T8X12U4+T12X8+T4X36)V36

- (XIS 4 %6 L x4yt iyt TR x18)yss

1 (U 4+ X0y L X312 4 xS 4 TP 4 X3 4 TE X104 4 it x2y88

+(X16U96+U84+X4U54+T4U50+X24U56+XBU44+T8U35+X48U28+T4X5U20
+T3x4U16+T12U12+T8X24UB+X52U8+T4X4BU4+T16X16+T4X12)V32

+XPOVE L (x2p00 4 xM0pR0 L pR xRt 4 Xyt 4 xS0t 4 x M0 4 xSy

+(X4U36+X8U16+T4X4U12+X25US)V28+(XBU32+X12U12+T4X8U5)V27

4 (XPUAE 4 XOUR 4 X1 L8 X8y (1% 4 X0ty

(UM 4 XOURO0 LAy 4 XBUS0 4 X2yt pA PO 1 xSt L 8 x Bt 4
+T16U24+X56U24+X40U12+TBX12U12+T12X8UB+X4U8
+T4U4+XSDU4+T8X32U4+T16X4U4+T4X56+T20)V24

(XU + XU L TEX 008 4 X2 4 X3P 4 X124 T X2y 22

+(X12U32+X32U24+X16U12+T4X12U8+T4X32)V20

+(X16U28+XZDUB+T4X16U4)V19+(X14U8+X34)V18+(U48+X18U4+T3)V17

(XTOUTO 4 X205 | phxI6yST | x 4048 | 2436 L S 160528 | 3287716 4 y247r12
+X48U8+TSX20US+T12X16U4+TBX40)V16

S+ XY L (18t x 212 L 8 1By ple | iyl

+(X20U28 +X24U8+T4X20Ud +X44)V12 +(X24U24 +X28U4+T4x24)v11

F (XUt + XV 4 (x84 x 200

+(U100 +X2(1U72 +X28U52+T4X24U48 -+ X32U32+T8X24U24+X16U20+X36U12
+T4X32U8+UE+TSX2BU4+T1|3U44+T12X24)V8

+ (U24 - X4U4 +T4)V7 + (XZGU4B +X34UB +TBX2G)VG +X2v5

+(X28U24 +X32U4 +T4X28)V-4

+X3CIV2 +X24V +T16X8 +X24U16 +X8U4 +X64 +XSU96

Cy =V256+U8V‘244+(U24+X4U4+T4)V220+XZV215+V210+U2V207+X4V203
+U12VJ.92+U8X8V184+U8v175+(U2S+X4US+T4U4)V168+U4X2V166
+(XBU24+X12U4+T4XB)V160+(U4+X10)V15B -+ U6v155+USV152+(U24+T4)V151
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+ XSVISO +X2V149 + U2XBV147 + X12V143 + Vld.l + U2V13E + XQVLZM
-+ (U24 +X4U4 +T4)V128 +X2V1‘26 +[,f2V”5 + (XJ.EUJEi + U4)V112 +X4V111 +X3‘2VIDB
+ (U4D + XAUZCI 5 T4U16 + XB)V LQd - U10V103 + U15X2v10‘2 + UBXd.VQQ +UEX32V96
+(U48+XBUB +TB)V92+X16V90+X4VEB+U4X16V&4+(U‘24+X4U4 +T4)V82
+ (U 4 XPU 4 TP0® 4 X*8 4 XH)VE 4 (UPS 4 XU - Ut VT L U xRV
+ (UEE +T4U4 +X24)V76+ (X4U24+XBU-l+T4X4)V75+U4X2V74+X6V73
F (XU VTR L gttt (XU X L X1t xR VOR (Ut 4 x10) v
+X4V65 + (USS + X4U16 +T4U—12 +X24U8)V64 + (X2U12 +X32)Vﬁ2
+ (‘5{32U32 + X15U2c7 +X35U12 + T4X32US 4 UB>V—BD 4 UZ‘XS'.’V.59 + (X34U8 +XE-)V55
< (U72 +X4U52 +T4U4S -+ T8U2a +X32U4+ T8X4U4 +TJ.2)V-SG + (XlﬁUS +X36)V55
+(X2U43 _'_TSX2)V54_+(X16U56+U44+T4U20+T8X16U8+X8U4+T4X4)V52
+ UMV 4 (XPUT 4 X0V ¢ v 4 (XU L T XU 4 X0V (U TtV
+ (U48+XEU8+X18U4+T8)V-46 +US)(2‘{45
+(U3°+X"U6°+T4U56+T8U32 +X48U24 +‘TS,X-4U12 +T12U8 +X52U4
+}{16 +T4X48)V44
+(U50+X16U16 +U4 +T5U2)V43 T (XQUSS +TBX2U8 +X4+X50)v42
+ (X4U32 +X24U24 + XSUIZ + T4XAUS +X28U—f1 +T4X24)V40
+ (XdUAS +X4U2 +X32 +T8X4)V39 + (XSUS +X26)v38
+ (X32U4B +X40U8 +T8X3Z)‘/3f:i + (U40 +XJU20 +Tv1U16 +X16U6)V35
4 (U 4 xRy S CATe I (XLGUB + X:’-s)vaz + (X16U24 + X8y 4 rix sy
+ TRV L x By
o+ (X16U72+X20U52 +T4X16U48+X'24U32+T8X16U24 +X28U12 +T4X24U8+X4BU4
+T8X20U4 + TlZXJ.B)VQS
+(X24U2+.,Y52>V27+(X18U45 +,Y32U24+_X26U8+X36U4+T4X32+T8X18)V26
+(U32 +XZCIU24 +X4U12 +T4U8 +X24U4 +X34 +TAX20)V24
+ (X32U26 + X36U—6 + TAX.'SZUZ + XZS)V23 4+ (X2U8 + X22)V22 + U2X34V21
i (UO(-S +X32U28 +X16Ulﬁ +X36US +T4X32U4 4 Ucl +X56 o TIG)VEO
_f_(}(.’:‘GLTZ‘l +_X40Uq +T4'.XS€)‘/19 +(X16U48 +X24U8 +X34U.4 +X15U2+TSX16)V-18
4 (UG -+ X38)V17 + (X16U5U + X24U10 + XIGU-i + T8X16U2)V15 -+ U4X4V13
+ (X4DU24 +X44U4+T4X40)V12+ (X20U48+X28U8 +X20U2 +T8X20 +X4B)V11
+(U72+XAU52+T4U4S+XBU32+TEU24+X—12U12+T4X8U8 +TBX4U4
+X42 +T12)V10
+U2X8v9+(X2U48+X16U24 +X10U8 +X20U4 —|—T4X15+T8.X'2)V'B
+ (U74+X4U54+T4U50 +XBU34 +U28+T8U26 +X12U14 +T4XSU10 +X4U3
+T3X4U6 +T4U4 +T12U2)V7
+(X4U24 +X8U4 +XL8 +T¢LX4)VG + (X2U50 +X10U1.0 +X2U4+T8X2U2+X12)VG
+XGV-4
+ (XdUTZ +X8U52 + T4X4U48 + X12U32 +X4U26 + T8X4U24 +X32U‘Z4 +X16U1‘2
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+TEXRUS 4+ XOUC 4+ X3U L TP Ut 4 XU 4+ TEX p 14 T )yl
+(X6U48+X14UB+XGU2+TSX6+X34)V+U43+XSUS+U2+T8

(7\3 :V23G + U5V224 + V-213 + U2v210 +X4V2C|5 + (U24 +X4U4 +T4)V200 - XQV:lgB
+ U4V134 4+ XBVI'TS - U'LQ\V-l'TZ + V157 o+ UEXSV164 4 U-lVlﬁl 4 USL,L”E + UBVlSE
+U4X4vl54 +X8vl53 +U2X5V150 + (UQS +X4UB +T4U4)V148 + (XQUfI +X12)V146
+ U2V141 + (XBU24 +X12U4 +T4xB)V140 +X10v138 +X¢’1V137 + USV-132
+ (U24 +X4U4 + T4)v131 +X2V129 +V121 + U16V120 + U2V-118 + de114 - USV].UQ
+ (U24 +X4U4 +T4)V108 + (UlD +X2)v106 + U8X16V104 + US}(G-VIDQ
- (U32 +X4U12 +T‘1UB)V96 + USX2V94 +X32V88 + USVEB + (U24 +X4U4 + T4)V85
+X2V33 + (UZB +X4U6 + T4U2)V82 + (X15U24 +X20U4 + XEU.! +T4X16)v80
+ (XIIU'Z‘L +XSU4 +X18 +T4X4)VTE + (X32US + XG)VTS + ‘/-75
+ (U4S —I—XBUB +U'.’ +T8)V72 +X15V70 + U.ZOVBB +X32V65 + U‘iXJGVGd + U2X32V62
+ (U 4 TOUS 4 X0 4 XV L ST (28 L it x4y
- (Uld +X2U4)V54 +U15V51 + U12X4V50 + (U48 +T8)V49
+ (X8U24 +X4SUS -+ X12U4 +T4X5)V48 +X16V47 + (U50 & T&uz +X10)v’15 +X’lv45
+ (X16U48 + X24UE + TBXIG)V44 + (X4U48 + X4U2 + TSx-’l)v'iz + U4X'16V41
+ (X32U:32 +X35U12 +T4X32U8 + U8 + XQO)VfID 4 (U24 +X4U4 +T4)v39
+ (X34U8 +X16U6 +X8)V38 + (UIU + X‘LB + X:’)VST + (U12 + XEDU-A +X48U‘2)VJ4
+ (X4UB + XZ4)v33
+ (X16U5G +X24U15 +TEX13U8)V32 -+ (X24U2 +X52)v30
_'_ (X32U24 + X35U4 + T4X32)V29 _I_ UBX20V25 + X3<1v27
- (X32U26 +X5U8 +X36U13 + T4X32U2 +X28)‘/2(5
+ (USD +X4UBU + T4U56 +XBU40 +:I-.BU3Z + X'18U24 +X12[J20 + T4XBD-1G 4 T8X4ul2
+T12U8 + X52U4 +X34U2 +T4X4S +X16)v24
+ U4V23 + (XzUSG - X36U24 +XlDU1‘3 +TSX2US +_X40U4 +T4X36 + X50)v22
+(XMOUE L x4yt g x10p7 | 816y
+ (UGZ +X4U32 +T4X4U8 + UG +TSU'1 +X38)V2D
+ (XISUSO +X24U10 +XGUS +X16U4 + TSX1$U2)V18 + USV17
+ (XBZZ:I48 + X40U8 BN T8X32)V16 + XBV15 + (XZUU4S < .XZSU-S + X20U2 -+ TSXQO)VIG
+ (U72 +X4U5'2 +T4U48 +XBU32 +TBU2‘1 + Xlelz + T-iJYSUB -+ T8X4U4 4 le)vl.?n
+(X8U48 +XlGU5 +J¥8L72+TSJX—B 'i-,XPSS)Vl?+(.¥2U48-'—.YIOLIS-,—TB.Xz)Vll
+ (U'Td +X4U54 +T4U50 +X8U34 +T5UQG - X12L/-14 +Td‘¥3UIU +TB_¥4U6 +T12U2)V10
+ (X4U24 + XSUli + T4X4)V9
+ (XIBU'TZ +X2UU52 +X2U5O +T4X113U<15 +X24U32 -|—T3X16U24 +X‘28U-]2 +X10U10
+ T4X24UE + TSX20U4 + T3X2U2 - T]2XJG)V8
+ XGV7

N
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+(X4D-72+X5U52+X18U48+T,4X4U48+X12U32+X4U26+T8X-1U24+X16U12
+X‘26U-H+T4X12U8+XEUG+T8XSU—4+T4X4U2+T8X13+1+T12X4)V—6

+(XGU48+X20U24+X14US+X24U4+X6U2+T8XG+T11X2O)V4

+ (U-:IS +XSU8 +U2 +T8)V3 - (X8U24 +X12U4 +T4XS +X22)V2+X16V

+U4+X16U16+T16+UQG+X10

Co =UAVE0 L (12 4 X224 TR0 | xR0 4 208 | 8y I68 | it x By 180
+ (UIG + X2U6 -+ T2U4)V156 -+ U4XV-155 - (XBU]2 + .XIOUZ + TZXS)V148 + X9V1«17
+XSV143 + (U12 +X2U2 +T2)V139 +XV138 +- V134 4 U4V128 + (XZD-Q +T2)V116
LXVME Ly pByl08 (20 | x20p10 | 28 | x4y l04 B yryn08 Usyvoe
4 (Uzs + XaUB + TaUA)V—Q‘I! o+ U4X2V90 * U4V82
5 (USB +X2U26 +T2U2<1 +X4U16 +T4U12 + XGUG -+ T2X4U4
+T4X2U2 +X16U2 +T6)V80
4 (XU24 +X5U<l +T4X)V79 - (XQULQ +X4U2 +T2X2)V75 +X3VT'T + X20V76
+ U+ XU THVTE L XV (U + X% 4 XUt TRV - U TV
+ XVGSJ + (X4U24 +X8U4 +T4X4)VGS + XGVGG + V65 + U16V64
. (X32U12 + X34U2 +T2X32)VGO + XEBVGEI + (U52 + UG - T8U4)V56
+ X32V-55 4 (U24 +X2U14 +T2U12)V52 + UIQXVE'II + (XISUS + XBUZ)V-lS
+ (UGO +X‘.2U50 - T2U48 +T8U12 +X—18U4 +T8X2U2 +X12 +T10)V44
+ (XU4S +T8X)V43 + (Xd.UlQ +X24U4 +X6U2 -+ T2X4)V4l3 + (LT4S + D—2 +T8 +X5)V39
+ (X32U28 +X16U1C. +X3GU8 +X18U€i +T4X32U4 +T2X16U4)V35
+ (UEO +X2U10 +T2US +X17U4)V35 + (XUS +X34U4)V34
+ ()(480—12 +X50U2 +T'2X48)V32 +X49Vv31
+(X16U52 +X16U6+TSX16U4 +X26U2+T2X2-'1)V28 +(X48+X‘25)‘/‘27
4 (XSQUSG o X34U26 + T2X32U24 + XSGUIS +T4X32U12 + X35U6 _!_TEXSSUAL
+ T4X34U2 + TBXBZ)V24
+ (X33U24 - XS'TD-ﬂl + T4X33 + X24)V23 + (X34U-12 + XSUd + XBGU-B + T2X34)V22
+ x¥y
+ (U + XU+ U+ XPU U0+ TRU 4 XU 4 TEXR U XU
+TSX4US +T4U6 +T12U4 + XZillz)Vm)
+ (X32U24 o+ leUIZ +X36U4 +X18U2 +T2X16 +T-‘1‘X—32)V19
n (X2U52 + e +X10U12 + T2 +TSX2U4 + X17)V1s + (XU4 +X34)V17
+ (X16U60 - X18U50 + T2X16U4H + X24UZEU +TS_X16U12 + X2GU10 - TEXQAUS
L Tex BT 4 x84 T10X16)V16
+ (X17U4S +X25US +T8X17)V15 + -¥16V14
+ (X8U26 + X20U12 _'_ X12U6 -+ T4XSU2 +X22U2 +T2X20)V12
+ (X16U48 + X'.24U8 +X16U2 +TSX16 +X21)V11 + (XBU12 +T2X8)V10 —{—_X'QVQ
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+(U84+X2U74 +T2U72+X4U64+T4UGO+X6U54+T2X4US2+T4X2U50+T6U4S
+X8U44+TSU36+X10U34+T2XSU32+TBX2U26+T10U24+T4X8U20+T8X4U16
+X14U14+T2X12U12+T12U12+T4X10U10+TGXBUB+T8X6U6
+XIGU4+T10X4U4+T12X2U2+T4XJ.2+T14)V8

+ (XU 4 XU 4 TixU 4 XU L TOXUR 4 xR
_,_ T4X9U8+T8X5U4+T12X)V7

_'_ (X2U60+X4U50+T2X2U4S+X10U20+T8X2U12+X12[J10
+T2X10US+T8X4U2+T10X2+Xl4)VS

+(X3U48 +X11U8+TBX3+X8)V5

+(X4U36+XGU26 o T2X4U24+XBU16+T4X4U12
+Xx00°% L PP xBUY 4 rix Ut + T x V!

+(U72+X4U52+T4U48+X8[J32+U26+T8U24 4 X5U24+X12U12 - T4XSU8+X4UG
+X9U4+T8X4Ud.+T4U2+T12+T4X5)V3

+(‘¥6U12 +XBU2+T2X6)V‘2 - (X2U4B+U12+X10U8+T8X‘2+T2+X7)V+X

Cl =UVZDB +X2V206 + USVIEB + U—4X2V154 - UX8V14B + X10V146 -+ leSQ + X2V137
+ UVLlG +X2v1]4 + VlDﬁ + U9V104 4= U8X2V10'2 + (U25 + XQU-S + TIJIU)VBU
+(X2U24 +X6U4 +X2U+X16 +T4X2)V78 +X4V7G + (U24 +X4U4 +U+T4)V70
+ UX32V6CI +X34v58 + U4V54 + U—13V52 + U12X2V50 +X8Vdﬁ + (Udg +T8U)V44
+ (X2U48 +T8X2)V42 + UX4V40 +X6V38 + V.37 + U5X16V36 + UQVSS
+ U4X18V34 +U8X2V33 + UX4BV32 +X5OVSO + UX24V28 + (X16U4 +X26)V-26
+ (X32U25 +X36U5 +T4X32U)V24 + (X34U24 +X38U4 + X34U-+T4.X34)V22 +X36V20
+ UXIBVIQ + (UQB +X4U8 + US +T4U4 +X24)V18 +X18V17
- (X16U49 +X2IJ.U9 +T8X16U)V16 + (X18U48 +X26U3 +T8X18)V14 + UXEOV12
+ (XBU24 +XJ2U4 +X8U+T4X8 + X22)v10 + XlGVQ
+ (U7S +X4U53 +T4U49 +X8U.3.3 +TSU25 +X12U13 +T4X8UQ +T8X4U5 +T12IJ)V8
- (X2U72 +X6U52 +X2U49 +T4X2U48 +XlDU32 +T8_X2U24 +X14U12 +X10U9
+ T4X10U8 5 TSXGU4 + T8X2U + T12X2)V6
-+ (X4U48 +X4U25 +X12U8 +XSU5 +T4X4U+T8X4)V4
+ (XU 4+ XU+ XU+ TEXO)VE (UM 4+ XU+ U+ TV 4 XP

o =V207+U4V155 +X8V147+V138+V115 + U8V1Cl3 +(U24 +X4U4 n T4)VTQ+X2V7‘T
+V69+X32V59+U12V51+(U48+T8)V43+X4V39+U4X16V35+U8v34+x4ﬂv31
+X'24V27 +(X32U24+X36U4+T4X32)V23 +X34V'21 +X16V18+U—4V17
+ (X16U48 +X24UB +TBX16)V15 -+ X'20V11 +X8V9
+(U72+X4U52+T4Uas+XBU32+T8U24+X12U12+T4,X-SU8+T8X4U4 _1_T12)V7
+(X2U4B+X10U8+T8X2)V5+(X(IUQ(!.+X8U4+T4X-1)V3+Xﬁv+1
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C_y =TV L TPy 336 L yépdy 220 4 o 8y 212 | (pI6y;82 | qpipl2y1 208 |y 207

-+ T2X2V206 -+ T4v203 +- (T8U24 + TBXAUd + TIZ)VZDD + T8X2V193 + U4TBV184
+ TSX8V17E + UBTA.VlBE 3 TEVIG’T + (TSU20 4 T4X8U4)v160 + (TIGUSS + T4U16)V15G
+ U4TV155 + U4T2X2V154 + U16T8X8V152
+ (Tlsst.’iQ + T8U2B + T4x8U12 + TSX4U8 <+ T12U4)V14S + TXSV147
+ (T8X2U4 + TZXIO)V14E + T3V144 + (TBUIG + T4X8)V143
+ (T8X8U24 -+ T8X12U4 + TIQXS)V]A.D + (T15U32 + T4U12)V139 + (T 4 TSXIO)VISB
o+ TQvalS'T + T4v].34 + (T8U24 + TSXdel + TIZ)VIEI + TBX2V129 + U4T4V128
+ U16T8V12D + TVllE + T2X2V11-1 + T4V111 + (T32U64 + Tlﬁx32)v108 + T2v106
o+ (TIGUAD + TGUED + TBXIGUB + T4X4)V104 T UST‘/—103 + U8T2X2V102 + U8T4V99
+ (T4U28 + T4X4UB + TBU4)V92 + U4T4X2VDD + (T16X16U32 1 TSXSZ)VSB
+ (T3U4D + TSX4U20 + T12U16)V—B4 + (T8X2U16 + T4U4)V—82
+ (T32X16U64 + T4U36 + TBX16U24 + T4X4U16 + T8U12 + T16X48)V80
+ (TU24 - TX4U4 -+ TS)V79 -+ (T2X2U24 + T!XXQUIE + T2XGU4 + TGX2 + TZXlﬁ)V7S
+ TX2V77 + (Td.XZD + TEXd)V'TG + (T4U24 + T4x4U4 + TS)v75 + UISTS V74 + T4X2v73
+ (T32U88 4 T32X4U68 + T36U64 o+ T8U48 + TSXti UQB + T12 U24 + T16X32U24
+ T4X32U4 -+ T16X36U4 + T20X32)V72
+ (T32X2 UG4 + T16U32 + TBX2U24 + T2U24 + T4U1'2 4 T2){4U4
+ T15X34 + TSXIG + Tﬁ)V—70
o+ TVSQ + (T4X4U24 + T4XBU4 + TBXA)VGS + T4X6VGG & T4V65
+ (T15U36 + T8X32U16 + T4U16 + T8X15U4)V64 . (T16X32U32 + T4X32U12 + T8X48)V60
+ Tx32v.'59 + T2X34V58
+ (TSZUSS + T4U52 + T16X8U32 + T12U4 + T15X32U4 + TBX24)V5G
+THXORVSS ATy S (T Lty 4 TS X ISRy YR2 2y Sty 2y x 250
+ (T8U64 + T32X8U64 + TSXSU24 + T16U16 + T44¥]6U8 -+ T16X40)V48
+ (T16 U32 + TSXIG)VKI.‘T + T2X8 Vdﬁ
+ (TlﬁUBD + T4U60 + T8X16U-48 “ T24D~32 + T8X4U16 + T12U12 + T4X4BU4
-+ T16X16 + T4X12)V44
+ (TU4E + TQ)V‘LE + (T2X2U4B + TIOXQ)V42
+ (T16X4U32 + TBXIEUZD + T4X4U12 + T4X24U-4 + T8X20)V40
+ (T32 U64 + T4U4S A T16X32 + TX4 + T12)V39 + T2XGV38 + T2V3T
1 (T4X32U2B + T8X48U16 -+ Td XlGUlﬁ + T4X3G UE 4 T8X32U4)V36
+ (T16U40 + T4U20 + T8X16U8 + TX16U4)V35 o+ (TUS R T4X34U4 + T’.’xlBU4)V34
+ U3T2X2V33 + (T16X4BU32 o+ T8X24UIG + Tled.B U12)V32 + TXdSV.?.l 4 T2X50V3Cl
+ (T32X16U68 + TIG UGO + T4X16U52 + T16X4U40 + TSX32 U40 + T2OU-36 + T8X36U20
+ T12X32U15 + T3X2DU8 + T16X43U4)V28
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+ (T4X4S + TX24)V27 + (T16X2U313 + TBXEAUIG + T2X16U4 + j-y8X18U4 + T2X26)V26
- (T16X32U56 + TIGX:.‘-SUEG + T4X32 UC."B + TZDX32U32 + T8X48 U24 + T4X36U16
+ T5X32U12 + T8X52U4 + T12X48)V24
+ (TX32U24 + TSXIGUJG + TX3GU4 + Td.XZd. + T5X32)V23
+ (/-[-|16X34U32 o+ T2X34U24 + TSUBO + T4X34U12 + T“IXSUA. + T2X38U4
+ TGX34 + TSXSO)VQQ
+ Tx 3y
+ (TSE UQQ + T4U75 + T32X4U-72 + TSSUGS + TSXIG Uﬁd + T32X24 UG(L
+ TlGXBUSG + T4X4 USG + T4X8 USG + T16X12 USS o+ T20X8U32 + T8X4U32
+ T16X32U28 + T8X211U24.’1 + TdXIZUIG + T16X16U16 + THXSUIQ
+ TlGXSGUB + T12X4U8 + TBX28U4 + T20X32 U4 + TlBD-Al
+ T12X24 + T2X36 + TlGX.'SG)V2O
+ (T4X32U‘24 ‘i" T4X16U12 + T4X36U4 + TSXSE)Vlg
+ (T32X2U68 + T4X2U52 + TISUGS + T16X10U32 + T2U28 + TS.XQUQS + T4U16
+ T4X10U12 + T2X4U8 + Tl6X34U4 + T12X2U4 s TSXIBUd + TGU4
+ T2X24 + TXIG + TBXZG)V18
+ (TU* - T2 x18 g T xSy 17
+ (TIBXIGUBO + T32 U64 + T4X16U60 + T8X32 U48 -+ T16X24U40 + T24XIGU32
+ T4X24U20 + TSXZUUIG + TIZXIG U12 + TSXAD US + T4X28)V15
_+_ (TX16U4S + TX24U5 + TSXIS)VIB
+ (TZXl8U4B + TGXSU:LG + T2X26US -+ TJ.OXIS + T4X16)V14
+ (TBUES + TBQXBUBS + T32X12U68 + TBX4U68 + T12U64 4 T36X8U64 + T16U40
+ TIGXZOUBZ + T16X4OU24 + TlGXtJ.UvQO + T20U16 - T4X'ZOU-12 + T18X44U4
+ T2UX40 + TBXEG)VIZ
+ (:FSQXlﬁ U64 + TISUEiS + T4X16 U48 -+ TIBX4U36 + TZDU.’32 + T4X24U8 + TSXQOUA
+ T16X4S T TXZU)VII
+ (TBX2UG4 + T32X10U64 + TJGXBUSQ + T2X80‘24 - T16X2U1Ev + T4X8U12 + T2X12U4
o+ TtiXS + TS_X24 + T15X42 + TZXZE)VID
+ (T16X2U32 + T8X18 + TXS + T2X16)V9
+ (T16U104 + T4U84 + TlGX4UG4 -+ T20U80 - T8X16U72 + TtLXrlUth + TIGXBU(M + TSUGO
+ TZ4U56 + TSXZDUSZ + TIZXIGUJLB + T4X8U44 + T]6X12U44
+ T?'SX-AL U40 + TZO XB U4U 4 T12 U36 T T24X4U36 + TBX24 U32 + T28 U32
+ TISXISU24 + TSXZZSU12 + T16U12 o T12X24U8 + TJ.GXQOUA + T4X16U4
+ TBXIZ + TQCIXlE)VB
-+ (TU72 + TX4U52 + T5U4S + TX8U32 + T9U24 T TXIZUIQ -+ TSXSUB
+ TQX4U4 + TIS)VT
+ (T16X2U80 + T2X2U72 + T4X2U60 + T2XGU52 + TGXQUAB + TSXIB U48 + T].GXIU U40
+ T24X2U32 + T2X10U32 + TLOX2U24 + TAXIOD-QO + TSXGUIG + T2X14U12 + TlQXQUl



[1]
[2]
3l
4
[5]
[6]
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+T8X26US+T6X10US+T10X6U4+T4X14+T14X2 +T16X18)V6
+(TX2U48+TSU16+TX]0UB+T4X8+TQ_XZ)V5
+(T16X4U56+T2X4U4S+T4X4U.56+T16X8U36+T20X4U32+T8X20U24+T4X8U16
+TSX4U1‘2+T2X12UB+T8X24U4+TIOX4+T12X20)V4
+(T32U88+T4U72+T32X4U68+T30UG4+T4X4U52+T4X8U32+TB_Y4U28
+T16X32U24+TX4‘U24+T4X12U12—l—TS_X—S[JS+T12X4U4+TXSIJ4+T16X36U4
+ T 4+ X L i xR
+(T16XGU32+T2X6U24+T4XGU12+T2_X10U4+T8X22+TSXB)V2
+(T32‘X-2U64+T4X2U4B+T16U32+T2U24+7w8X2U24+’1-,4U12+T4X10U8 +T2X4U4
+T16X34+T6+T12X2+TX6 + TSXIG)V
+T8U96+TG4U128+T8X16U16+T16U48+T32X64+T24+T2X8+T
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