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ON THE EXISTENCE OF MDS SELF-DUAL CODES

OVER FINITE CHAIN RINGS

Sunghyu Han*

Abstract. We studied the MDS self-dual codes over finite chain
rings. We stated the projection and lifting of codes over the finite
chain rings with respect to the MDS self-dual codes, and then we
applied the results to the MDS self-dual codes over Galois rings.

1. Introduction

Coding theory started with binary codes, meaning, codes over F2.
Then, it was developed for codes over finite fields Fpr and various rings.
Among the various rings, there have been many studies on codes over
Zpm . The Galois rings GR(pm, r) contain Fpr and Zpm . In this study,
we were interested in the linear codes over Galois rings, more generally,
the linear codes over the finite chain rings that contain Galois rings.

In coding theory, the minimum distance is very important because it
indicates the ability of the codes for error correction. Therefore, max-
imum distance separable (MDS) codes have attracted much attention.
Moreover, self-dual codes have also been investigated, because they are
closely related to other mathematical structures such as block designs,
lattices, modular forms, and sphere packings [13]. Codes that contain
both structures, termed MDS self-dual codes, have been investigated
for finite fields [6], finite rings Zpm [10], and nontrivial Galois rings
GR(pm, r). For the p = 2 case in GR(pm, r), the codes were investi-
gated in [2], and using an extended Reed-Solomon codes, MDS self-dual
codes of length n = 2r were constructed. For p ≡ 1 (mod 4) with any
r or p ≡ −1 (mod 4) with even r in GR(pm, r), the codes were studied
in [9], and using the building-up construction, various MDS self-dual
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codes over GR(pm, 2) were constructed. For p ≡ −1 (mod 4) with odd
r in GR(pm, r), the codes were studied in [8], and using the building-up
construction, various MDS self-dual codes over GR(pm, 3) were con-
structed.

In [4], Dougherty et al. studied the projection and lifting of codes
over finite chain rings. They also studied the minimum distance, MDS
codes, and self-dual codes related to the projection and lifting of codes
over finite chain rings. In this study, we continued their research to
investigate MDS self-dual codes over Galois rings. The results of this
study were as follows. First, we stated the projection and lifting of codes
over finite chain rings with respect to the MDS self-dual codes. Second,
we applied the first result to study the MDS self-dual codes over Galois
rings.

This paper is organized as follows. In Section 2, we provide basic
facts for finite chain rings, Galois rings, linear codes, self-dual codes,
and MDS codes. In Section 3, we show our first main result, which is
about the relationship between the projection and lifting for MDS self-
dual codes over finite chain rings. In Section 4, we show our second main
result, which is about MDS self-dual codes over Galois rings using the
results from section 3. All computations in this paper were performed
using the computer algebra system Magma [1].

2. Preliminaries

In this section, we provided basic facts for finite chain rings, Galois
rings, linear codes, self-dual codes, and MDS codes.

2.1. Finite chain rings

In this subsection, we gave various facts about finite chain rings [4].
Let R be a finite chain ring, m be the unique maximal ideal of R, and γ
be the generator of the unique maximal ideal m. Then m = 〈γ〉 = Rγ,
where Rγ = 〈γ〉 = {βγ | β ∈ R}. We have:

(2.1) R = 〈γ0〉 ⊃ 〈γ1〉 ⊃ · · · ⊃ 〈γi〉 ⊃ · · · ⊃ 〈γe〉 = {0}.

Let e be the minimal number such that 〈γe〉 = {0}. The number e is
called the nilpotency index of γ.

Let F = R/m = R/〈γ〉 be the residue field with characteristic p, where
p is a prime number. We know that |F| = q = pr for some integers q
and r. The following lemma is known [12]:
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Lemma 2.1. Let R be a finite chain ring with maximal ideal m = 〈γ〉,
where γ is a generator of m with nilpotency index e. For any 0 6= r ∈ R
there is a unique integer i, 0 ≤ i < e such that r = µγi, with µ a unit.
The unit µ is unique modulo γe−i. Let V ⊆ R be a set of representatives
for the equivalence classes of R under congruence modulo γ. Then

1. for all r ∈ R there exist unique r0, . . . , re−1 ∈ V such that r =∑e−1
i=0 riγ

i;
2. |V | = |F|;
3. |〈γj〉| = |F|e−j for 0 ≤ j ≤ e− 1.

By Lemma 2.1, the cardinality of R is

(2.2) |R| = |F| · |〈γ〉| = |F| · |F|e−1 = |F|e = per.

We also know that for any element a of R, it can be written uniquely as

(2.3) a = a0 + a1γ + a2γ
2 + · · ·+ ae−1γ

e−1,

where ai ∈ F. For an arbitrary positive integer i, we define Ri as

(2.4) Ri = {a0 + a1γ + a2γ
2 + · · ·+ ai−1γ

i−1 | ai ∈ F}
where γi−1 6= 0, but γi = 0 in Ri, and define two operations over Ri as

(2.5)

i−1∑
l=0

alγ
l +

i−1∑
l=0

blγ
l =

i−1∑
l=0

(al + bl)γ
l

(2.6)
i−1∑
l=0

alγ
l ·

i−1∑
l′=0

bl′γ
l′ =

i−1∑
s=0

(
∑
l+l′=s

albl′)γ
s

It can be seen that all Ri are finite rings. We define R∞ as the ring of
formal power series as follows:

(2.7) R∞ = F[[γ]] = {
∞∑
l=0

alγ
l | al ∈ F}.

For two positive integers i < j, we define a map as follows:

Ψj
i : Rj → Ri(2.8)

j−1∑
l=0

alγ
l 7→

i−1∑
l=0

alγ
l(2.9)

If we replace Rj with R∞, then we denote Ψ∞i by Ψi. Let a and b be
two arbitrary elements in Rj . Hence, we obtain

(2.10) Ψj
i (a+ b) = Ψj

i (a) + Ψj
i (b), Ψj

i (ab) = Ψj
i (a)Ψj

i (b).
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If a, b ∈ R∞, we have

(2.11) Ψi(a+ b) = Ψi(a) + Ψi(b), Ψi(ab) = Ψi(a)Ψi(b).

We note that the two maps Ψi and Ψj
i can be extended naturally from

Rn∞ to Rni and Rnj to Rni , respectively.

2.2. Galois rings

In this subsection, we provide various facts about Galois rings [14].
Let p and m be a fixed prime and positive integer, respectively. First,
consider the following canonical projection:

(2.12) µ : Zpm → Zp
which is defined by

(2.13) µ(c) = c (mod p).

The Map µ can be extended naturally to the following map:

(2.14) µ : Zpm [x]→ Zp[x]

which is defined by

(2.15) µ(b0 + b1x+ · · ·+ bnx
n) = µ(b0) + µ(b1)x+ · · ·+ µ(bn)xn.

This extended µ is a ring homomorphism with kernel (p).
Let f(x) be a polynomial in Zpm [x]. Then, f(x) is called basic irre-

ducible if µ(f(x)) is irreducible. The Galois ring is constructed as

(2.16) GR(pm, r) = Zpm [x]/(f(x)),

where f(x) is a monic basic irreducible polynomial in Zpm [x] of degree
r. The elements of GR(pm, r) are the residue classes of the form

(2.17) b0 + b1x+ · · ·+ br−1x
r−1 + (f(x)),

where bi ∈ Zpm(0 ≤ i ≤ r − 1).
A polynomial h(x) in Zpm [x] is called a basic primitive polynomial if

µ(h(x)) is a primitive polynomial. It is known fact that there is a monic
basic primitive polynomial h(x) of degree r over Zpm and h(x)|(xpr−1−1)
in Zpm [x]. Let h(x) be a monic basic primitive polynomial in Zpm [x] of
degree r. Consider the following element:

(2.18) ξ = x+ (h(x)) ∈ GR(pm, r) = Zpm [x]/(h(x)).

Then, the order of ξ is pr − 1. Teichmüller representatives are defined
as follows:

(2.19) T = {0, 1, ξ, ξ2, . . . , ξpr−2}.
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Then, every element a ∈ GR(pm, r) can be uniquely represented by the
form

(2.20) a = a0 + a1p+ a2p
2 + · · ·+ am−1p

m−1,

where ai ∈ T, (0 ≤ i ≤ m− 1).
The Galois ring GR(pm, r) is a finite chain ring of length m, and its

ideals are linearly ordered by inclusion,

(2.21) GR(pm, r) = 〈p0〉 ⊃ 〈p1〉 ⊃ · · · ⊃ 〈pi〉 ⊃ · · · ⊃ 〈pm〉 = {0}.

The p and m in this subsection correspond to γ and e in subsection 2.1,
respectively.

2.3. Codes over finite chain rings

Let R be a finite chain ring. An R-submodule C ≤ Rn is called a
linear code of length n over R. Unless otherwise specified all codes are
assumed linear. The elements in C are called codewords. The weight of
a codeword c = (c1, c2, . . . , cn) in C is the number of nonzero cj , (1 ≤
j ≤ n). The minimum weight of C is the smallest nonzero weight of any
codeword in C.

We define the inner product, that is, for x,y ∈ Rn, we define

(2.22) x · y = x1y1 + · · ·+ xnyn.

For a code C of length n over R, let

(2.23) C⊥ = {x ∈ Rn
∣∣x · c = 0, ∀ c ∈ C}

be the dual code of C. If C ⊆ C⊥, then we say that C is self-orthogonal,
and if C = C⊥, then we say that C is self-dual.

In [15], it was proven that for a linear code C over a Frobenius ring,

(2.24) |C| · |C⊥| = |R|n.

Note that finite chain rings are Frobenius [3].
It is known that a generator matrix for a code C over a finite chain

ring is permutation-equivalent to a matrix of the form

(2.25) G =


Ik0

A0,1 A0,2 A0,3 · · · A0,e−1 A0,e

0 γIk1
γA1,2 γA1,3 · · · γA1,e−1 γA1,e

0 0 γ2Ik2 γ2A2,3 · · · γ2A2,e−1 γ2A2,e

...
...

...
...

...
...

0 0 0 0 · · · γe−1Ike−1
γe−1Ae−1,e

 ,

where e is the nilpotency index of γ. The generator matrix G is
said to be in a standard form. All generator matrices in a standard
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form for a code C over a finite chain ring have the same parame-
ters k0, k1, k2, . . . , ke−1 [12, Theorem 3.3]. The rank of C, denoted by
rank(C), is defined as the number of nonzero rows of its generator ma-

trix G in a standard form. Therefore rank(C) =
∑e−1

i=0 ki. We call k0 in
G the free rank of a code C. If rank(C) = k0, then C is called a free
code. We say that C is an [n, k, d] linear code, if the code length is n, the
rank of C is k, and the minimum weight of C is d. It is immediate that
a code C with the generator matrix in Equation (2.25) has cardinality
(2.26)

|C| = |F|
∑e−1

i=0 (e−i)ki = (pr)
∑e−1

i=0 (e−i)ki = (pre)k0(pr(e−1))k1 · · · (pr)ke−1 .

In this case, the code C is said to have the type:

(2.27) 1k0(γ)k1(γ2)k2 · · · (γe−1)ke−1 .

2.4. Codes over R∞

In this subsection we are interested in codes over R∞. See [4] for de-
tailed information. Most terminologies in the previous subsection can be
similarly defined for codes over R∞. Specifically, linear codes over R∞,
codewords, minimum weight, inner product, dual code, self-orthogonal,
and self-dual are defined in the same way as that of the previous sub-
section.

Let C be a nonzero linear code over R∞ of length n, then any gener-
ator matrix of C is permutation equivalent to a matrix of the following
form:
(2.28)

G =


γm0Ik0

γm0A0,1 γm0A0,2 γm0A0,3 · · · γm0A0,r−1 γm0A0,r

0 γm1Ik1
γm1A1,2 γm1A1,3 · · · γm1A1,r−1 γm1A1,r

0 0 γm2Ik2
γm2A2,3 · · · γm2A2,r−1 γm2A2,r

...
...

...
...

...
...

0 0 0 0 · · · γmr−1Ikr−1
γmr−1Ar−1,r

 ,

where 0 ≤ m0 < m1 < · · · < mr−1 for some integer r. The column
blocks have sizes k0, k1, . . . , kr−1, and the ki(0 ≤ i ≤ r − 1) are nonneg-
ative integers. The generator matrix G is said to be in a standard form.
The rank of C is defined as follows:

(2.29) rank(C) = k =

r−1∑
i=0

ki.

A code C of length n with rank k over R∞ is called a γ-adic [n, k] code.
A code C with generator matrix of the form given in Equation (2.28) is
said to be of type

(2.30) (γm0)k0(γm1)k1 · · · (γmr−1)kr−1 .
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We say that C is free if C has type 1k.
Let i and j be two integers such that 1 ≤ i ≤ j < ∞. We say that

an [n, k] code C1 over Ri lifts to an [n, k] code C2 over Rj , denoted

by C1 � C2, if C2 has a generator matrix G2 such that Ψj
i (G2) is a

generator of C1. Hence, it can be proven that C1 = Ψj
i (C2). If C is an

[n, k] γ-adic code, then for any i < ∞, we call Ψi(C) a projection of C.
We denote Ψi(C) using Ci.

We know that for a γ-adic [n, k] code C of type 1k, Ci = Ψi(C) is an
[n, k] code of type 1k over Ri. In the following, we consider codes over
chain rings that are projections of γ-adic codes. Note that Ci � Ci+1 for
all i. Thus if a code C over R∞ of type 1k is given, then we obtain a
series of lifts of codes as follows:

(2.31) C1 � C2 � · · · � Ci � · · ·

Conversely, let C1 be an [n, k] code over F = R/〈γ〉 = R1, and let G1 be
its generator matrix. It is clear that we can define a series of generator
matrices Gi+1 ∈Mk×n(Ri+1) such that Ψi+1

i (Gi+1) = Gi, (i ≥ 1), where
Mk×n(Ri) denotes all the matrices with k rows and n columns over Ri.
This defines a series of lifts Ci of C1 to Ri for all i ≥ 2. Then, this series
of lifts determines a code C such that Ci = Ci, where the code is not
necessarily unique.

2.5. MDS codes

It is known [11] that for a (linear or nonlinear) code C of length n
over any finite alphabet A

(2.32) d ≤ n− log|A|(|C|) + 1.

Codes meeting this bound are called MDS codes. Further, if C is a linear
code over a finite chain ring, then

(2.33) d ≤ n− rank(C) + 1.

Codes meeting this bound are called MDR (Maximum Distance with
respect to Rank) codes [5, 12]. MDR codes do not imply MDS codes.
See the following example.

Example 2.2. Let C be a linear code generated by G = (2) over
Z4. Then, n = 1, rank(C) = 1, and d = 1. Therefore, C is MDR code.
Because log|A|(|C|) = log4 2 = 1

2 , C is not MDS.

The following lemma states the necessary and sufficient condition for
MDS codes.
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Lemma 2.3. Let C be a linear code over a finite chain ring R. Then,
C is MDS if and only if C is MDR and free.

Proof. Suppose that C is MDS. If C is not free, then log|R|(|C|) <
rank(C). Therefore, d ≤ n − rank(C) + 1 < n − log|R|(|C|) + 1. How-

ever, this is a contradiction. Hence, C should be free and log|R|(|C|) =

rank(C). Therefore, C is MDR.
Suppose that C is MDR and free. Let rank(C) = k and |R| = per.

Then, |C| = (per)k. Because |R| = per, we have log|R|(|C|) = k =

rank(C). Therefore, C is MDS.

The following theorem states that the weight distribution of MDS
codes over GR(pm, r) of code length n is uniquely determined.

Theorem 2.4. [12, Theorem 5.10] Let C be a MDS code overGR(pm, r)
of code length n and minimum weight d. For d ≤ w ≤ n, denote by Aw
the number of words of weight w in C. Then,

(2.34) Aw =

(
n

w

)w−d∑
i=0

(
w

i

)(
pmr(w+1−d−i) − 1

)
.

For codes over R∞ we say that an MDR code is MDS if it is of type
1k for some k. For a code C over a finite chain ring (or R∞), we say
that C is an MDS self-dual code if C is MDS and self-dual.

3. MDS self-dual codes over finite chain rings

In this section, we state the projection and lifting of codes over finite
chain rings with respect to MDS self-dual codes. We start with the
following theorem:

Theorem 3.1. [4, Theorem 2.11] Let C be a γ-adic [n, k] code of type
1k. Then the following two results are true.

1. the minimum Hamming distance dH(Ci) of Ci is d = dH(C1) for
all 1 ≤ i <∞;

2. the minimum Hamming distance d∞ = dH(C) of C is at least d =
dH(C1).

From the above theorem, we can obtain the following:

Theorem 3.2. If C is an MDS code over Rj (1 < j <∞) then Ψj
i (C)

is an MDS code over Ri for all 1 ≤ i < j.
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Proof. Because C is an MDS code over Rj (1 < j < ∞), C is an

[n, k, d] code of type 1k, d = n−k+ 1, and with a generator matrix G =
[I | A]. Let C be a γ-adic code with the same generator matrix G. Then

C is a γ-adic [n, k] code of type 1k, C = Cj , and Ψj
i (C) = Ψi(C) = Ci.

Thus, according to Theorem 3.1, d(Ψj
i (C)) = d(C) = n− k+ 1. Clearly,

Ψj
i (C) is free. Therefore, Ψj

i (C) is MDS.

Theorem 3.3. [4, Theorem 2.13] Let C be a linear code over Ri, and

C̃ be a lifted code of C over Rj , where j > i. If C is an MDS code over

Ri then C̃ is an MDS code over Rj .

Theorem 3.4. [4, Theorem 3.4] If C is a self-dual code of length
n over R∞, then Ψi(C) is a self-dual code of length n over Ri for all
1 ≤ i <∞.

From the above theorem, we can obtain the following:

Theorem 3.5. If C is a free self-dual code of length n over Rj (1 ≤
j ≤ ∞), then Ψj

i (C) is a free self-dual code of length n over Ri for all
1 ≤ i < j.

Proof. Let C be an [n, k] self-dual code. Because C is free, C has
a generator matrix G = [I|A]. Suppose that j = ∞. Then, following

Theorem 3.4, Ψj
i (C) is self-dual for all 1 ≤ i < j. Clearly, Ψj

i (C) is free.
Suppose that j <∞. Let v and w be codewords in C. Then, we have

(3.1) [v,w] =
n∑
l=1

vlwl ≡ 0 (mod γj).

So,

(3.2) Ψj
i ([v,w]) ≡ 0 (mod γi).

Note that
(3.3)

Ψj
i ([v,w]) = Ψj

i

( n∑
l=1

vlwl

)
=

n∑
l=1

Ψj
i (vl)Ψ

j
i (wl) = [Ψj

i (v),Ψj
i (w)].

Thus, Ψj
i (C) is self-orthogonal. Note that Ψj

i (C) is free. Using Eqn. (2.24),

we can conclude that Ψj
i (C) is self-dual.

The following theorem can be found in [4]: The proof is important in
this study; hence, it was included.
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Theorem 3.6. [4, Theorem 3.7] Let R be a finite chain ring, F =
R/〈γ〉, where |F| = q = pr, 2 6= p a prime. Then, any self-dual code C
over F can be lifted to a self-dual code over R∞.

Proof. Let G1 = (I|A1) be a generator matrix of C over R1(= F).
Because C is self-orthogonal, we have:

(3.4) I +A1A
T
1 ≡ 0 (mod γ).

We show in the following by induction that there exist matrices Gi =
(I|Ai) such that Ψi+1

i (Gi+1) = Gi and I +AiA
T
i ≡ 0 (mod γi) for all i.

Suppose we have that I +AiA
T
i = γiSi. Let Ai+1 = Ai + γiM , we want

to find a matrix M such that

(3.5) I +Ai+1A
T
i+1 ≡ 0 (mod γ)i+1.

We know that
(3.6)

I+Ai+1A
T
i+1 = I+AiA

T
i +γi(AiM

T +MATi ) = γi(Si+AiM
T +MATi ).

This indicates that the matrix M should satisfy

(3.7) Si +AiM
T +MATi ≡ 0 (mod γ).

Let M ≡ 2−1SiAi (mod γ). Then

Si +AiM
T +MATi ≡ Si + 2−1(AiA

T
i S

T
i + SiAiA

T
i )(3.8)

≡ Si + 2−1(−Si − Si) ≡ 0 (mod γ).

Therefore, 2−1SiAi (mod γ) is a solution for M .

From the above theorem, we can obtain the following:

Theorem 3.7. Let R be a finite chain ring, F = R/〈γ〉, where |F| =
q = pr, 2 6= p a prime. Let C be a free self-dual code over Ri (1 ≤ i <∞).
Then, C can be lifted to a self-dual code over Rj (1 < j ≤ ∞).

Proof. The proof is almost the same as that of the above theorem.

From the above, we can obtain the following:

Theorem 3.8. If C is an MDS self-dual code of length n over Rj
(1 ≤ j <∞), then Ψj

i (C) is an MDS self-dual code of length n over Ri
for all 1 ≤ i < j.

Proof. Using Theorems 3.2 and 3.5.
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Theorem 3.9. Let R be a finite chain ring, F = R/〈γ〉, where |F| =
q = pr, 2 6= p a prime. Let C be an MDS self-dual code over Ri (1 ≤
i < ∞). Then, C can be lifted to an MDS self-dual code over Rj
(1 < j ≤ ∞).

Proof. Using Theorems 3.3 and 3.7.

Theorem 3.10. Let R be a finite chain ring, F = R/〈γ〉, where
|F| = q = pr, for a prime p and a positive integer r. Let C be an [n, k, d]
MDS self-dual code. Then, we have the following:

1. If p = 2 or pr ≡ 1 (mod 4), then n is even.
2. If pr ≡ −1 (mod 4), then n ≡ 0 (mod 4).

Proof. Let C1 = Ψj
1(C). Then C1 is an [n, k, d] MDS self-dual code

over Fq by Theorem 3.8. Therefore, k = n/2 and n should be even. This
proves the first statement. Let G = [I | A] be a generator matrix of C1.
Then, AAT = −I. Therefore, A is an n

2 ×
n
2 antiorthogonal matrix.

The existence of an antiorthogonal matrix is studied in [8]. According
to Table 2 in [8], n

2 should be even if pr ≡ −1 (mod 4). This proves the
second statement. the result follows.

Using Theorems 3.8 and 3.9, the existence of MDS self-dual codes
over Ri is equivalent to those over Fq, if q is odd. For the existence of
MDS self-dual codes over Fq, (odd q), we can refer to [6].

4. MDS self-dual codes over Galois rings

In this section, we study MDS self-dual codes over Galois ringsGR(pm, r).

4.1. MDS self-dual codes over Galois rings with odd char-
acteristic

First, we assume that p is an odd prime. From the previous section,
we know that the existence of MDS self-dual codes over GR(pm, r) is the
same as that over Fpr . Specifically, if we have an [n, n/2] MDS self-dual
code over Fpr , then we can construct an [n, n/2] MDS self-dual code over
GR(pm, r) for all m ≥ 1 using the method in the proof of Theorem 3.6.
In the following we provide examples.

Example 4.1. Let C be a [2, 1, 2] MDS self-dual code over F5 with
the generator matrix G = [1 2]. To construct a [2, 1, 2] MDS self-dual
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code over GR(510, 1), we apply the method in the proof of Theorem 3.6,
and we have A10 = [a10] with

a10 = 2121342303(5)(4.1)

= 2 ∗ 50 + 1 ∗ 51 + 2 ∗ 52 + 1 ∗ 53 + 3 ∗ 54

+ 4 ∗ 55 + 2 ∗ 56 + 3 ∗ 57 + 0 ∗ 58 + 3 ∗ 59

Thus, G10 = [1 a10] produces a [2, 1, 2] MDS self-dual code overGR(510, 1).

Example 4.2. Let C be a [4, 2, 3] MDS self-dual code over F3 with
the generator matrix:

(4.2) G =

(
1 0 1 1
0 1 2 1

)
.

To construct a [4, 2, 3] MDS self-dual code over GR(310, 1), we apply the
method in the proof of Theorem 3.6, and we have A10 with

A10 =

(
1 1
2 1

)
+ 3

(
0 1
1 0

)
+ 32

(
2 0
2 2

)
(4.3)

+ 33
(

2 0
2 2

)
+ 34

(
1 2
0 1

)
+ 35

(
0 1
1 0

)
+ 36

(
0 1
1 0

)
+ 37

(
1 2
0 1

)
+ 38

(
1 2
0 1

)
+ 39

(
0 1
1 0

)
.

4.2. MDS self-dual codes over Galois rings with even char-
acteristic

Let p = 2. Consider R = GR(2m, r). Because of MDS conjecture, we
only considered the code lengths up to 2r. Suppose that m = 1. Then
R = F2r .

Theorem 4.3. [7, Theorem 3] For R = GR(2, r) = F2r , there exist
MDS self-dual codes C = [2k, k, k + 1] over R for all k = 1, · · · , 2r−1.

If MDS conjecture is true, then the case m = 1 is completed. MDS
self-dual codes over GR(2m, r), (m ≥ 1) have been constructed using
Reed-Solomon codes [2].

Theorem 4.4. [2] Let R = GR(2m, r), n = 2r − 1(> 2), and m ≥
1. Then, there exists an MDS self-dual code over R with parameters
[2r, 2r−1, 2r−1 + 1], which is an extended RS code.

Theorem 4.5. For Galois ring R = GR(2m, r), we have the following:

1. If m ≥ 2, then there is no MDS self-dual code over R for code
length n ≡ 2 (mod 4).
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2. If m ≥ 2 and r is odd, then there is no [4, 2, 3] MDS self-dual code
over R.

Proof. Suppose that C is an [n, n/2] MDS self-dual code overGR(2m, r)
with a generator matrix G = [I | A]. Then, AAT = −I and A is an n

2×
n
2

antiorthogonal matrix. Antiorthogonal matrices were studied in [8]. Ac-
cording to Table 2 in [8], n/2 should be even. Therefore, n ≡ 0 (mod 4).
This proves the first statement. In addition, if r is odd, n/2 cannot be
two by Table 2 in [8]. Therefore, n cannot be four. This proves the
second statement.

Theorem 4.6. Let R = GR(2m, r), m ≥ 2, and even r. Then, there
is a [4, 2, 3] MDS self-dual code over R.

Proof. According to Table 2 in [8], −1 is a two square sum. Let
α, β ∈ R such that α2 + β2 = −1. Let

(4.4) G =

(
1 0 α β
0 1 −β α

)
= (I2 | A).

Let C be the code generated by G. We claim that C is an MDS self-dual
code. It is clear that C is self-dual. To prove that C is MDS, we have
to show that the minimum weight of C is three. First, we claim that α
and β are units. Suppose that α is not a unit. Then α = 2α1 for some
α1 ∈ R. So, 4α2

1 + β2 = −1. Apply Ψm
2 . So, Ψm

2 (4α2
1 + β2) = Ψm

2 (−1).
Then (Ψm

2 (β))2 = −1. This is a contradiction. Therefore, α and β are
units. For x 6= 0 and y 6= 0, we note that c1 = [x 0]G and c2 = [0 y]G
have weight three. Suppose that c = [x y]G has weight two. Then,
[x y]A = [0 0]. So, [x y] = [0 0]A−1 = [0 0]. Therefore, the weight of c
is zero. This is a contradiction. Therefore, C has the minimum weight
three and C is MDS.

In Table 1, we show the existence of MDS self-dual codes of code
length n over GR(2m, r), (m ≥ 2). In this table, ’X’, ’O’, and ’?’ rep-
resents the nonexistence, existence, and tentatively unknown existence,
respectively. Using Theorems 4.4, 4.5, and 4.6, the table can be verified.
From the table, we do not know the existence of MDS self-dual codes of
code length n = 8 and 10 over GR(2m, r), (m ≥ 2).

In the following example, we apply the method in the proof of Theo-
rem 3.6 toGR(2m, r). The method is only effective for the odd character-
istic. Therefore, we apply a modified method to the even characteristic.

Example 4.7. Let

(4.5) G =

(
1 0 w w2

0 1 w2 w

)
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Table 1. Existence of MDS self-dual codes of code
length n over GR(2m, r), (m ≥ 2)

r\n 2 4 6 8 10 12 14 16
1 X
2 X O
3 X X X O
4 X O X ? X ? X O

be a generator matrix for an MDS self-dual [4, 2, 3] code over F4 =
Z2[x]/(f(x)), f(x) = x2 +x+ 1, w = x+ (f(x)). Let G = [I | A1]: Then

(4.6) A1 =

(
w w2

w2 w

)
.

Consider GR(22, 2) = Z4[x]/(f(x)). Note that I +A1A
T
1 = 2S1, where

(4.7) S1 =

(
0 1
1 0

)
.

Let A2 = A1+2M . We want to find M such that I+A2A
T
2 ≡ 0 (mod 4).

This is equivalent to S1 +MAT1 +A1M
T ≡ 0 (mod 2). Let

(4.8) M =

(
a b
c d

)
.

Then, from S1 +MAT1 +A1M
T ≡ 0 (mod 2), we have

(4.9)(
0 (a+ d)w2 + (b+ c)w

(a+ d)w2 + (b+ c)w 0

)
≡
(

0 1
1 0

)
(mod 2).

Let a = b = 1, c = d = 0. So,

(4.10) M =

(
1 1
0 0

)
and

(4.11) A2 = A1 + 2M =

(
2 + w 2 + w2

w2 w

)
.

Thus, G2 = [I | A2] generates a self-dual code C. We can verify that
the minimum weight C is three. Therefore, C is a [4, 2, 3] MDS self-dual
code over GR(22, 2) = Z4[x]/(f(x)).
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We continue this process. Consider GR(23, 2) = Z8[x]/(f(x)). Note
that I +A2A

T
2 = 4S2, where

(4.12) S2 =

(
1 0
0 0

)
.

Let A3 = A2+4M . We want to find M such that I+A3A
T
3 ≡ 0 (mod 8).

This is equivalent to S2 +MAT2 +A2M
T ≡ 0 (mod 2). Let

(4.13) M =

(
a b
c d

)
.

Then from S2 +MAT2 +A2M
T ≡ 0 (mod 2), we have

(4.14)(
0 (a+ d)w2 + (b+ c)w

(a+ d)w2 + (b+ c)w 0

)
≡
(

1 0
0 0

)
(mod 2).

Therefore there is no solution for M . Hence, we do not succeed in this
case.

5. Conclusions

In this research, we studied the projection and lifting of codes over
finite chain rings with respect to MDS self-dual codes. In particular,
for the odd characteristic case, we can lift MDS self-dual codes over
finite fields to MDS self-dual codes over finite chain rings. For the even
characteristic case, we studied various aspects of the existence of MDS
self-dual codes over Galois rings. Many aspects remain to be studied in
the future, including the existence of MDS self-dual codes of length 8
and 12 over GR(2m, r), (m ≥ 2).
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