• Title/Summary/Keyword: Galerkin 법

Search Result 235, Processing Time 0.029 seconds

Natural Frequency Analysis of Arch by Galerkin's Method (갤러킨법을 이용한 아치의 고유진동해석)

  • Jung, Chan-Woo;Seok, Keun-Yung;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.4
    • /
    • pp.55-61
    • /
    • 2007
  • Recently, with the development of computer, FEM has became the most frequently used numerical analysis method. FEM shows great ability in structures analysis, however, Galerkin's Method is more useful in grasping influence or the tendency of parameter which forms the structure. This paper perform the eigenvalue analysis using Galerkin's Method which is advantageous in grasping the influence and the tendency of parameter which forms the structure and study on the influence of parameter that forms arch on natural frequency response.

  • PDF

Optimal Test Function Petrov-Galerkin Method (최적시행함수 Petrov-Galerkin 방법)

  • Sung-Uk Choi
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.599-612
    • /
    • 1998
  • Numerical analysis of convection-dominated transport problems are challenging because of dual characteristics of the governing equation. In the finite element method, a strategy is to modify the test function to weight more in the upwind direction. This is called as the Petrov-Galerkin method. In this paper, both N+1 and N+2 Petrov-Galerkin methods are applied to transport problems at high grid Peclet number. Frequency fitting algorithm is used to obtain optimal levels of N+2 upwinding, and the results are discussed. Also, a new Petrov-Galerkin method, named as "Optimal Test Function Petrov-Galerkin Method," is proposed in this paper. The test function of this numerical method changes its shape depending upon relative strength of the convection to the diffusion. A numerical experiment is carried out to demonstrate the performance of the proposed method.

  • PDF

The Petrov-Galerkin Natural Element Method : I. Concepts (페트로프-갤러킨 자연요소법 : I. 개념)

  • Cho, Jin-Rae;Lee , Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2005
  • In this paper, a new meshfree technique which improves the numerical integration accuracy is introduced. This new method called thc Petrov-Galerkin natural clement method(PG-NEM) by authors is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used lot conventional natural clement method called the Bubnov-Galerkin natural element method(BG-NEM). But, unlike the BG-NEM, the test basis function is differently chosen, based on the concept of Petrov-Galerkin, such that its support coincides exactly with a regular integration region in background mesh. Therefore, it is expected that the proposed technique ensures the remarkably improved numerical integration accuracy in comparison with the BG-NEM.

The Study of Finite Element Method for Analyses of Travelling Magnetic Field Problem (운동자계 문제의 해석을 위한 유한요소법에 관한 연구)

  • Chang Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.108-116
    • /
    • 2005
  • This paper presents finite element analyses solution in the travelling magnetic field problem. The travelling magnetic field problem is subject to convective-diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Dirichlet, Neumann and Periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FFM is stable regardless boundary condition.

Higher Order Parabolic Equation Modeling Using Galerkin's Method (Galerkin방법을 이용한 고차 포물선 방정식 수중음 전달 해석)

  • 이철원;성우제;정문섭
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 1999
  • Exact forward modeling of acoustic propagation is crucial in MFP such as inverse problems and various other acoustic applications. As acoustic propagation in shallow water environments become important, range dependent modeling has to be considered of which PE method is considered as one of the most accurate and relatively fast. In this paper higher order numerical rode employing the PE method is developed. To approximate the depth directional operator, Galerkin's method is used with partial collocation to lessen necessary calculations. Linearization of tile depth directional operator is achieved via expansion into a multiplication form of (equation omitted) approximation. To approximate the range directional equation, Crank-Nicolson's method is used. Final1y, numerical self stater is employed. Numerical tests are performed for various occan environment scenarios. The results of these tests are compared to exact solutions, OASES and RAM results.

  • PDF

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

Application of Channel Routing Model by Taylor-Galerkin Finite Element Method -Modeling of Flow in Flood- (테일러-갤러킨 유한요소법에 의한 하도추적 모형의 적용 -홍수시 하천 유량 모의-)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.404-410
    • /
    • 2011
  • For the simulation of one-dimensional unsteady flow, the Taylor-Galerkin finite element method was adopted to the discretization of the Saint Venant equation. The model was applied to the backwater problem in a single channel and the flood routing in dendritic channel networks. The numerical solutions were compared with previously published results of finite difference and finite element methods and good agreement was observed. The model solves the continuity and the momentum equations in a sequential manner and this leads to easy implementation. Since the final system of matrix is tri-diagonal with a few additional entry due to channel junctions, the tri-diagonal matrix solution algorithm can be used with minor modification. So it is fast and economical in terms of memory for storing matrices.

Adaptive Element-free Galerkin Procedures by Delaunay Triangulation (Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석)

  • 이계희;정흥진;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.525-535
    • /
    • 2001
  • In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.

  • PDF

An Analysis of Transmission Line Structure by Combining Image Mode and Galerkin Methods (영상-모드 및 Galerkin법을 이용한 전송선 문제 해석)

  • 신규현;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1296-1301
    • /
    • 1991
  • This paper presents a hybrid image mode Galerkin method for the analysis of the transmission line structures suspended between infinite parallel ground planes. A Green's function that consists of numerically accelerated image mode terms is developed, which is used in boundary integral equation. Transmission lines of arbitrary cross section are analyzed using Galerkin's method. Two kinds of configurations of transmission lines are studied in sample problems.

  • PDF

The Petrov-Galerkin Natural Element Method : III. Geometrically Nonlinear Analysis (페트로프-갤러킨 자연요소법 : III. 기하학적 비선형 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.123-131
    • /
    • 2005
  • According to ow previous study, we confirmed That the Petrov-Galerkin natural element method(PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method(BG-NEM). This paper is an extension of PG-NEM to two-dimensional geometrically nonlinear problem. For the analysis, a linearized total Lagrangian formulation is approximated with the PS-NEM. At every load step, the grid points ate updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates The large deformation problem.