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Abstract

Numerical analysis of convection-dominated transport problems are challenging because of dual
characteristics of the governing equation. In the finite element method, a strategy is to modify the
test function to weight more in the upwind direction. This is called as the Petrov—Galerkin method.
In this paper, both N+1 and N+2 Petrov-Galerkin methods are applied to transport problems at high
grid Peclet number. Frequency fitting algorithm is used to obtain optimal levels of N+2 upwinding,
and the results are discussed. Also, a new Petrov-Galerkin method, named as “Optimal Test
Function Petrov-Galerkin Method,” is proposed in this paper. The test function of this numerical
method changes its shape depending upon relative strength of the convection to the diffusion. A
numerical experiment is carried out to demonstrate the performance of the proposed method.

Keywords: transport equation, convection—diffusion equation, Petrov—Galerkin finite element method, optimal
test function Petrov—Galerkin method, frequency fitting method
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1. Introduction

Transport in the environment is described by
the convection-diffusion equation (or the
transport equation). The transport equation is a
mixed type of partial differential equation which
has both hyperbolic and parabolic characteristics.
A difficulty in the numerical analysis of the
transport equation lies
strategy should be
characteristic of a given problem. That is, if the

in that the solution
chosen according to the

parabolic feature of the problem is stronger than
the hyperbolic feature, then a numerical modeler
does not have to concern numerical oscillations
because the diffusion term naturally smoothes
the solution. However, in a reversed case, the
modeler needs to introduce a special dissipative
technique for the convection term because of a
possible generation of the steep gradient in the
numerical solution. In the latter case, mostly,
the upwinding concept should be introduced to
protect the solution from the downwind
contamination (Christie et al., 1976 ; Heinrich et
al., 1977 ; Brooks and Hughes, 1932 ; Westerink
and Shea, 1989). This may
achieved, if the finite difference method is
employed, by using upwind type schemes such

be more easily

as the backward difference scheme,
MacCormack scheme, or Beam and Warming
scheme.

The conventional finite element method (or
Bubnov Galerkin method) shows robustness in
the boundary value problem in which governing
equations are self-adjoint partial differential
equations. However, the Galerkin method is not
so efficient for non-self-adjoint problems such
This
characterized by a

as a convection—diffusion  equation.

equation can  be

non-dissipative  convection process and a
dissipative  diffusion  process. When the
dissipative process dominate the transport

phenomenon, one can get a good solution using
the conventional Galerkin method. However,
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when the non—dissipative convection process is
partial  differential  equation
a first-order hyperbolic partial

dominant, the
behaves as
differential equation which describes a pure
wave propagation with a finite celerity.
Therefore, the numerical solution may form or
maintain a sharp front. When the conventional
Galerkin method with linear basis functions is
applied to this

encountered in  the

problem, oscillations are

numerical  solution.
Specifically, in the one-dimensional case, the
finite element scheme can easily be shown to
become

scheme. Since the numerical errors arise from

centered difference finite difference
the symmetric treatment of the convection terms
in the conventional finite element method, the
test functions are modified in order to give
more weight in the wupwind direction as
commonly done in the finite difference method.
This technique is referred to as “the
Petrov-Galerkin (PG) method.”

The N+ k& PG method uses the weighting
functions which are % polynomial degree higher
than the basis functions. The N+1 PG method,
having the quadratic perturbation term in the
been  successfully

weighting  functions, has

applied to the steady-state convection—-dorinated

transport problem (Christie et al, 1976
Heinrich et al., 1977). However, it failed to
improve numerical solutions for the

time-dependent problem, which necessitated
introduction of the N+2 PG method. The test
functions of the N+2 PG method include both
asymmetric quadratic and symmetric cubic
perturbation terms.

Although it is true that the N+2 PG method
alleviates numerical oscillations without
introducing too much dissipation, a weakness of
this method lies

levels  of

in determining appropriate
Specially,
experiments have shown that the symmetric

upwinding. numerical

cubic term rather than the asymmetric quadratic
term in the weighting functions plays a major

BEAKRRERHE



role in reducing the numerical errors due to
time dependency (Dick, 1983 ; Westerink and
Shea, 1989 ; Bouloutas and Celia, 1991). That is,
using both quadratic and cubic terms in the
N+2 PG method deteriorates numerical solutions
in the time-dependent problem. Tezduyar and
(1986) proposed perturbation functions
dependent wupon Courant number in the
streamline upwind PG method. Westerink and
Shea (1989) presented a graphical method to
determine upwinding parameters for the cubic

(Ganjoo

perturbation function for the pure convection
problem. Miller and Cornew (1992) showed that
the standard deviation of a Gaussian source
affects optimal upwinding level in the N+2 PG
method. Carrano and Yeh (1994) introduced a
spectral weighting technique to optimize the
phase error in the N+2 PG method.

The paper reviews various PG methods for
steady and unsteady transport problems.
Applicability and lirmtation of each method are
is applied to
finding optimal levels of upwinding in the N+2
PG method A new PG method, the test

functions of which change optimally depending

investigated. Frequency fitting

upon the relative strength of convection and
diffusion

experiments are

terms, 1s  proposed.  Numerical
carried out to see the

performance of the new method.

2. Finite Element Formulation

Consider the following  one-dimensional

transport equation:

g - D%@— - wit m
where ¢ and x denote time and distance,
respectively, ¢ is the concentration, D 1is the
diffusion coefficient, and #« describes the
velocity field. Eq. (1), a mixed type of partial
differential equation, describes the transport by
different physical processes,
and diffusion. In

two namely,

convection general, we
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instabilities due to
size (dx)
exceeds a certain value. This is given by

encounter  numerical

convection term when the mesh

Pe = My ~ 5 @

which is grid Peclet number, an indicative of
the relative dominance of the convection to the
diffusion. The weighted residual form of Eq. (1)
is written as

f[(%j—nnﬁi“i]dx —

_dc
ox Ox D ox | bouncary

(3)

where w is a test function. After the assembly
process, one can get a global system of matrix
differential equation such as

@ v__ Ad —
Mdt(A A%)e =P 4)

M is

mass matrix, A° is convection stiffness matrix,

where ¢ is vector of nodal unknowns,

A? is diffusion stiffness matrix, and P =
convective and diffusive boundary flux forcing
vector. In the conventional Galerkin method, the
basis function of the trial solution is the same
as the basis function of the test function.
the PG method employs the test
function whose basis function is different from

However,

the basis function of the trial solution. The

numerical  oscillations  encountered in  the
numerical analysis of the convection dominant
flow come from the non-symmetry of the
stiffness matrix due to A”. Therefore, the PG
devised to

symmetry of the stiffness matrix to some

formulation  was recover the

extent.

3. Steady-State Transport

3.1 N+1 Petrov—-Galerkin Method

At steady-state, Eq. (1) can be written as
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dc kic_

where k= u/D. If we denote x =[0,1] and
the boundary conditions such as

_ 1 =40
(%) 0 x—1 (6)
Then, the analytical solution of Eq. (B) is
obtained as
ok
Ax) = -e—l——ei ¢

The N+1 test functions proposed by Christie et
al. (1976) are

w, =¥ — aFg(d (8a)

wy = Ty + a Fgp(d) (8h)

where ¥; and Fgp denote standard linear
basis functions and a quadratic perturbation
function, respectively, and a is a parameter to
control the level of upwinding by Fgp. In Eq.

(8), the quadratic perturbation is defined by
Fop= 31+ 81~ 8 )

Christie et al. (1976) obtained an optimal value
of @ (@, ) analytically such as

o = coth % - % (10)

Egs. (8)-(10) constitute test functions of the
N+1 PG method, which are one polynomial
degree higher than the basis functions for the
trial solution.

3.2 Numerical Experiments

Numerical experiments are carried out to
demonstrate the performance of the N+1 PG
method. For the sake of comparison, two finite
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Fig. 1. Grid Peclet Number versus
RMS Error

difference methods (centered and backward
difference schemes) are also used for numerical
analysis. The root mean square (RMS) error
versus grid Peclet number is plotted in Fig. 1,
where the RMS error is estimated by comparing
the numerical solution with the analytical
solution by Eq. (7) at all computational nodes.
Computations with various grid Peclet numbers
are performed by changing the convection
velocity with a fixed grid size. It is seen that
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the N+1 PG method works perfectly in all
Whereas the RMS error
backward difference scheme has a maximum

cases. from the
value for problems at low Peclet numbers such
as 0< Pe<2, but the error tends to decrease as
Pe increases further. The centered difference
scheme 1s good for problems at low Peclet
numbers such as Pe<2. However, as Pe
increases, the error increases monotonically. The
current numerical experiments indicate that one
way to eliminate the numerical instability with
conventional methods of non-upwinding type is
to severely refine the mesh such that convection
is no longer dominant in the element level.
would
computational costs.

However, this require too much

4. TimeDependent Transport

4.1 N+2 Petrov-Galerkin Method

In the time-dependent transport problem, @,
derived for the steady-state problem is no
longer valid due the truncation error from time
discretization. Therefore, both spatial and
temporal discretization should be taken

account in determining the upwind level. The

into

temporal discretization is important especially
when the velocity field is not uniform.
The test functions of the N+2 PG method are

given by
w, = ¥~ aFgp(&) — BFcp(&)  (Lla)
wy, = ¥y + aFgp(é) + BFc(€)  (1lb)

where Foy is a cubic perturbation function and

B is a parameter to control the level of cubic
upwinding. The cubic perturbation function in
Eq. (11) is defined as

Fcy(é)=%su+5)(1~é) (12)

In Eq. (11), the cubic function Fcy provides
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test functions with symmetric modification while
Fop

integration of the above test functions leads to

makes asymmetric modification. Simple

the following matrices given by Eq. (4) for a
single element (Westerink and Shea, 1989):

=g} et L] (13a)
i R
A% = 4 :i ﬂﬂ%[_ll —11] (13b)

1 (13¢)

Ax

Through truncation error analysis, Westerink

and Shea (1989) showed that, for pure
convection problems, the N+2 PG method with
the choice of A= 2Cr? works well by

reducing the error up to O(F®) with ¢ and
O(h*) without a. For combined convection
and diffusion problems, Westerink and Shea
(1989) also showed that the N+1 upwinding
does not offer an effective mechanism for time
dependent problems. While the N+2 PG method
with 8= 2C»?
numerical solution especially for the problem at

significantly improves the

high Peclet number and Courant number close
to unity.

42 Numerical Experiments

A convection-dominated transport problem
with « = 005 m/day, D =2.5x107° m*/day
is solved by using the N+2 PG method. An
initial condition of c(x,t=0)=0 is used, and
such boundary conditions as

dc

<uc— DW)X:(): UC feed (14a)

c(x—o0 t) =0 (14b)

are used at the upstream and the downstream
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boundaries, respectively. Values of c¢pew =1.0,

4t =1.0 day, and 4dx=0.05 m are used in
the computation, resulting Cr =1 and Pe =
100. The value of grid Peclet number is large
enough to cause oscillations in the numerical
solutions.

Fig. 2 shows the computed results by the
standard  Galerkin
numerical oscillations from phase error in Fig.

method. One can see

2(a) when Crank-Nicolson time integration is
employed. Numerical dissipations from amplitude
error are seen in Fig. 2(b) when fully-implicit
time integration scheme is used. The results in
Fig. 2(a) and (b) conform to Fourier analysis in
Pinder and Gray (1977).

The N+2 PG method is now applied to the
same problem. In order to get optimal values of
a and B, only B should be altered at first
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<
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Fig. 2. Comparison of Numerical Solution by
Galerkin Method and Analytical Solution
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with @ = (. By comparing the RMS error, an
optimal value of upwinding parameter £ which
produces minimum error, can be sought. Then,
an optimal value of a with a fixed value of 8
can be obtained by the same procedure. This
procedure is based on the fact that @ does not
vary significantly compared to 5.

In the present example, such values of
upwinding parameters as ¢ = 0.3 and 8=1.9
are obtained by numerical experiments. Time
integration by Crank-Nicolson scheme is used
therein. Concentration profiles computed after 50
days and 100 days are presented in Fig. 3(a)
and (b), respectively. A significant improvement
due to the N+2 upwinding is observed in the
computed solution compared with the solutions
in Fig. 3. The optimal upwinding parameter #
= 19 is found to be very close to the value
from A= 2Cr? suggested by Westerink and
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Fig. 3. Numerical Solution by N+2 PG Method
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Fig. 4. Test Functions of N+2 Petrov—Galerkin Method

Shea (1989). Also, it can be noted that the role
of quadratic perturbation function
important compared to that of cubic perturbation

is not so

function.

Fig. 4 shows test functions of the N+2 PG
method, the shape of which varies depending
upon upwinding parameters ¢ and £. When
both @ and A are zero, the resulting test
functions become linear basis functions as
depicted in Fig. 4(a). The role of the quadratic
perturbation function by @ appears to make the
test functions asymmetric over the length of
element while the role of the cubic function by
A 1s to make the weight function symmetric,
which is seen in Fig. 4(b) and (c), respectively.
Fig. 4(d) shows optimal test functions for the
which are obtained after
many runs of numerical experiments.

previous example,

43 Frequency Fitting of N+2 Petrov—-Galerkin
Method

By using the Fourier series expansion, the
analytical solution of the transport equation can

B34 S5 19984 104

be expressed as

clx, t) = %:Cmexp(z'o,,,x + iB,.t) (15)

where o, and B, are space and time

frequencies of the m-th component, respectively.

Then the analytical enlargement factor
Al=clx, t+4H]/cx, H] becomes
A. = exp(if,4t) (16)

for the n-th component. We can express the
time frequency in terms of the space frequency
by substituting the solution, Eq. (15), into Eq.
(1). That is, we have

8, = i Do’ — uo, (17)

With the help of Eq. (17), the analytical
enlargement factor can be rewritten as

A= exp(—iCr-y— Cr-3*/Pe) (18)

where Cr = udt/dx and y = odx. Expanding
Eq. (18) in a series form leads to
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A=1+Ay+A%+ A  +Av" + 0(y%)(19) 2 —12+36CH — Cr P+ Cr‘lPel

12— Pt + Cr P’

B=

where the coefficients A; are o .
When the fully-implicit time integration is used

A = —i Cr (w =1), the coefficients of the numerical
A Cr/Pe— CrYf2 enlargement factor become
2 = —Lr
ABZ i(CrZ/Pe-i— CVJ/G) dlz—i Cr as :_CV/P€~C72
Ay = Cr*[2P + Cr3/2Pe + Cr'/24 ay=-— 24 F; (12a— 48Cr+ BPe—24Cr* Pe)
_ _ 2p, -
Similarly, the numerical enlargement factor / of %4~ 48 pez (48Cr—4Pet+12a"Pe—2pPe— 48aCrPe
the N+2 PG method is obtained. That is, + 144C» Pe— 2aPe’ + aBPe’ — 4 BCrPe® + 48C* Pe®)
;= 1=(/3+ /12 + o' Cra+ 20 Cr/Pe)(1 — cos y) — i(a/2 + & Cr)siny (20)
1-(1/34+8/12— wCra~2wCr/ Pe)(1 —cosy) — i a/2 —wC#r)siny
where @ =1—w. If the Crank-Nicolson time 20
. LI B ] LI [ T T 17T [ 1 17T T T[T
integration scheme is used (w = 05), then Eaq. 's E be = 10 ]
B — e = 1
(20) can be expressed in a series form such as . —— Pe = 50
1.0 £~ "~~~ Pe =100 l}
i £ Pe =500 I
[ =1+ay+ a2y2+a3y3+a4y4+ o(y”) (2D 05 - /,+u
-] 0.0 —E 14—//;
where the coefficients a; are s B 1
. oy ;
a=—1 Cr E
ay=— Cr/Pe— Ccr /2 e e ;
__2.0'lJllJJlLllllllllIlllilll
as=—1i 2 4 75 (12a=24Cr+ BPe—6Cr Pe) 00 02 04 05 0B 10
Courant Number
a,= 48P - (24Cr— 4 Pe+ 192¢2Pe—2 BPe—24aCrPe (a) Optimal Quadratic Upwinding Parameters
e
+36C#* Pe—2aPé* + aBPe* — 2 fCrPe’ + 6Cr*Pe) 20 E' ANLELES BN B LR R ‘ﬁg
1.5 Pe = 10
It is seen that the standard Galerkin method ‘o S A / !
without any upwinding is second-order accurate ‘ S Pe =500 E
when the Crank-Nicolson time stepping is used. o8 ;_ —g
For the N+2 PG method to have fourth-order = %° E
accuracy, the third- and fourth-order terms in ~05 b ‘j
Eq. (19} should be the same as the terms for ~1.0 é— 3
the numerical enlargement factor given by Eqg. -15 B _E
(21). This leads to the solution of two -2.0 Foo it vny vty vy b b i
simultaneous equations with unknowns @ and o0 o Co",:mm Nu:fer o8 "
£, which are obtained as (b) Optimal Cubic Upwinding Parameters
2Pe(1 —2CH) Fig. 5. Optimal Upwind Parameters for

a = 22

12— Pe’+ CHF P N+2 PG Method
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Comparison of the above coefficients with the
coefficients of the analytical factor indicates that
the standard Galerkin method with fully-implicit
time integration is first-order accurate, and the
upwinding affects only third- and fourth-order
error terms.

Fig. 5(a) presents a plot of the quadratic
upwinding parameter @ versus Cr for
different values of Pe. It is seen that « from
Eq. (22) is approximately zero except for a
value of Cr close to unity, and that @ is not
sensitive to Pe once it exceeds 10. That is, the
asymmetric quadratic perturbation function in
the N+2 PG method does not play a significant
role in upwinding for problems at large Pe. A
plot of cubic upwinding parameter S versus
Cr for different values of Pe is given in Fig.
5(b). The value of A from Eq. (23) is seen to
increase from 0 to 2 as Cr increases from 0 to
1 when Pe is greater than 10. Also, § is
found to be insensitive to Pe unless Pe is
significantly small. It is also seen that both «
and B blow up when Cr is very close to
unity.

The foregoing results coincide with the
results in Bouloutas and Celia (1991), where
they showed that the cubic PG method with
B=2Cr? is third- or fourth-order accurate
when Pe is extremely large (Herein, the cubic
PG method means the N+2 PG method with «
=0). Notice also that the N+2 PG method or the
cubic PG method with 8= 2Cr? becomes the
standard Galerkin method when Cr is small

and Pe is large.

5. Optimal Test Function
Petrov-Galerkin Method

5.1 Optimal Test Function Method

Before introducing the OTFPG method, it may
be worth to mention Optimal Test Function

#3144 #E5 19984 10H

(OTF) method by Celia et al. (1989). Consider

an operator form of the one-dimensional

transport equation such as

_pd’c _ dc_ dc _
LC=D8x2 U= "o flx), 0=x</
(24)
with the following boundary conditions:
c(0) = g, and (/) = g (25)

The weighted residual form of Eq. (24) is

fol(Lc) w(x)dx = fol(% - Fx, z‘))w(x)dx
(26)

where w(x) is a test function. If we discretize
the domain into E sub-intervals with E+1
nodal points, then Eq. (26) can be written as

fO[(Lc) w(X)dre = i};j; f TM(LC) wRde @D

Since the optimal test function method is based
on a weak form of the governing equation,
integration by parts of the RHS of Eq. (26)
after applying Eq. (24) leads to

[roucase = g [petk-wme] "

_ Xj+1 LiC_‘ _ M
L ] (D o uc) o dx}
Another integration by parts of the second term

of the RHS of Eq. (28) yields

Xi-1

fOI(Lc) w(x)dx= E){ [Dw% - D%,,xw c— uwc] .

+ (L*w)c(x)dx]

(29)

where L" is the formal adjoint of L. If one

takes a test function which satisfies L w =0
within each element, the following relationship

607



should be hold:

fol(LC) () dx = E){ [Dw% —Dw% - uwc] z,

(30)

Then, we have the following final form of
equation from the OTF method:

i
f(Lc) w(x)dx= [[Dw—— + uw] <
0 %
D], % PN+ [0 — et (D L]
dx
(31
where [ ] is a jump operator defined as

(-1, =01y =01, (32)

If explicit forms of w(x) can be derived, Eq.
(31) leads to (2E +2)x(2E +2) algebraic
equations, & 5 bandwidth matrix. The unknowns

are essentially nodal values of function c¢; and

lcj, de;ldx]E .
that no approximation has been introduced in
the However, the
homogeneous exhibits
non-constant coefficients and cannot be solved

their derivatives, 1ie., Notice

formulation so  far.
adjoint equation

exactly, in general.,

52 Optimal Test Function Petrov-Galerkin
Method

the OTFPG method
originates from applying the test function of the
OTF method to the PG method. That is, instead

The main idea of

of solving Eq. (31), one can use the test
function satisfving L'w =0 from Eg. (30) in
the PG formulation. In order to obtain the test
function, the following equation should be
solved:
_pdw . dw _ ,
L'w = D55 7 + u de 0 (33)
which is a second-order homogeneous linear
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ordinary differential equation. We, thus, have
two fundamental solutions which are linearly

independent, i.e.,

wi(x) =1 (34a)

wo(x) = expl — (u/D)x] (34b)

Any linear combination of these solutions can
be a solution of Eq. (33). However, we have the

following two restrictions for w; to be test
functions:
w(0) =1, wi(4dx) =0 (35a)
wy(0) =0, wy(dx) =1 (35b)

After applying the fundamental solutions of Eq.
(34) into Eq. (35),
solutions such as

we have two particular

exp(— ux/D) — exp(— udx/D)

wi(x) = T—exp(— uls/D) L0 <x<Ax
(36a)
_ _l—exp(—ux/D)
wyx) = 1 —exp(= udz/D) ’ 0<x<4dx (36b)
Fig. 6 shows test functions from Eq. (36),

which have various shapes depending upon the

relative strength of convection term to the
wu/D=0.1m™!, the

test functions in Fig. 6(a) are nearly the same

dispersion term. When

as linear shape functions, and when «/D is

increased up to 20000 m~!

, the test functions
in Fig. 6(d) have a shape like a step function.
A steady-state transport problem with # =
005 m/day and D=2.5x10"° m%day is
solved by the OTFPG method. The resulting
grid Peclet number is 100. Fig. 7 shows both
numerical solution and analytical solution given
by Eq. (7).
solutions is seen in the figure, which illustrates
that Pe -dependent weighting in the PG method
the

Perfect agreement between two

is sufficient for steady “state  transport

BEAEFIERNE
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Fig. 6. Optimal Test Functions of OTFPG Method
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Fig. 7. Solution of Steady-State Transport
Problem by OTFPG Method

problem.

the
transient case is solved to demonstrate the
applicability of the proposed OTFPG method.

Time step of 4dt=1 day is used to satisfy

Now, same transport problem but

Cr = 1. Computed results are presented in Fig.
8(a) and (h), which show excellent agreement
between the analytical and numerical solutions.
This illustrates the capability of the numerical
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Fig. 8. Numerical Solution by OTFPG Method
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method which removes fictitious oscillations
around the high—gradient region in the solution

while maintaining a quite steep front.
5.3 Courant Number Restriction

Courant number restriction of Cr =1 plays
an important role in the numerical analysis of
the time-dependent, convection-dominated,
transport problem. As discussed, the transport
equation behaves as the linear convection
without the

diffusion term) if the convection dominates the

equation  (transport equation

transport  process. Satisfying the Courant
number restriction becomes significant in the
of the

equation. It is well known that the simple

numerical analysis linear convection
backward difference scheme applied to the linear
convection equation, yields the exact solution
when Courant number is unity (Anderson et al.,
1984).

The example in the previous section showed
the applicability of the QTFPG method when
Courant number is unity. Concentration profiles
computed when Courant number is not unity
are given in Fig. 9. When Courant number is
than unity,

solution is

overshooting in the
while
undershooting is seen when Courant number is

greater

numerical observed

less than unity. Thus, it should be emphasized
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Fig. 9. Impact of Courant Number in
OTFPG Method
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that Courant
satisfied when  grid Pe —dependent
functions are used in the PG method.

should be
test

number restriction

6. Conclusions

The paper reviewed various PG methods for
steady-state and time-dependent convection-—
The N+1 PG
results for the
problem due to the

dominated transport problems.
method produced
steady-state

accurate
optimal
upwinding level obtained analytically. However,
in the problem, the
discretization error necessitates the introduction
of the N+2 PG method. Although the N+2 PG
method provides much  Dbetter numerical
algorithm than the N+1 PG method, a
significant drawback of this method lies in

time-dependent time

finding appropriate levels of upwinding. The
frequency fitting algorithm was applied to the
N+2 PG method, which showed that only cubic
upwinding term played an important role in the
time dependent problem. This coincides with the
results from numerical experiments (Dick, 1983 ;
Westerink and Shea, 1989 ; Bouloutas and Celia,
1991).

A new PG method, termed as optimal test
Petrov—Galerkin  method, is also
introduced in this paper. The test functions of

function

the new method are functions of grid Peclet
number so that they change their shapes
according to the characteristic of the transport
problem. The new method was applied to a
convection-dominated transport problem, and
was found to yield excellent agreement between
the analytical and the numerical solutions. The
present study explicitly indicated that the test
functions of the PG method should be dependent
on grid Peclet number in the convection-
dominated transport problem once the Courant
restriction is satisfied. The numerical modeler,
who is to select either numerical oscillations or
numerical dissipations, has to worry in order to
satisfy the Courant number restriction when the
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Pe-dependent weighting is made in the new
Petrov-Galerkin method.
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Appendix

For the OTFPG method, components of the
matrices in Eq. (4) for a single element are
given as follows:

2 — 2" + 9Pe ¢ — P
2 Pe (u/D) (— 1+&™

my =

— 9 + 27— 9P — P&
9 Pe (/D) (— 1 + &7

my =
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— 2 4+ 2%~ 92 Pe ™ — P& -1+ & —Pe

i = 2 Pe (u/D) (—1+¢™) % = Pe (¢ = 1)
I 2¢™ + 2Pe + Pez)epe g = L= epi +Pe e

z 2 Pe(u/D) (— 1 + &™) 2 Pe (e — 1)
2 = L= e” + Pe

u Pe (™ — 1) (3= 5 3:93-035/7 4-:1998.06.16/ 4 A 9 2.:1998.09.03)
g, = — L+ e’ —Pe

12 Pe (ePe _ 1)
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