• Title/Summary/Keyword: GaAsN

Search Result 1,119, Processing Time 0.017 seconds

Numerical Study of Enhanced Performance in InGaN Light-Emitting Diodes with Graded-composition AlGaInN Barriers

  • Kim, Su Jin;Kim, Tae Geun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • In this paper, we report the effect of GaN/graded-composition AlGaInN/GaN quantum barriers in active regions on the electrical and optical properties of GaN-based vertical light emitting diodes (VLEDs). By modifying the aluminum composition profile within the AlGaInN quantum barrier, we have achieved improvements in the output power and the internal quantum efficiency (IQE) as compared to VLEDs using conventional GaN barriers. The forward voltages at 350 mA were calculated to be 3.5 and 4.0 V for VLEDs with GaN/graded-composition AlGaInN/GaN barriers and GaN barriers, respectively. The light-output power and IQE of VLEDs with GaN/graded-composition AlGaInN/GaN barriers were also increased by 4.3% and 9.51%, respectively, as compared to those with GaN barriers.

Characteristics of Al/$BaTa_2O_6$/GaN MIS structure (Al/$BaTa_2O_6$/GaN MIS 구조의 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.7-10
    • /
    • 2006
  • A GaN-based metal-insulator-semiconductor (MIS) structure has been fabricated by using $BaTa_2O_6$ instead of conventional oxide as insulator gate. The leakage current o) films are in order of $10^{-12}-10^{-13}A/cm^2$ for GaN on $Al_2O_3$(0001) substrate and in order of $10^{-6}-10^{-7}A/cm^2$ for GaN on GaAs(001) substrate. The leakage current of thses films is governed by space-charge-limited current over 45 MV/cm in case of GaN on $Al_2O_3$(0001) substrate and by Poole-Frenkel emission in case of GaN on GaAs(001).

Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Gallium nitride (GaN) powders and nanowires were prepared by using tris(N,N-dimethyldithiocarbamato)gallium(III) (Ga(DmDTC)$_3$) and tris(N,N-diethyldithiocarbamato)gallium(III) (Ga(DeDTC)$_3$) as new precursors. The GaN powders were obtained by reaction of the complexes with ammonia in the temperature ranging from 500 to 1100 ${^{\circ}C}$. The process of conversion of the complexes to GaN was monitored by their weight loss, XRD, and $^{71}$Ga magic-angle spinning (MAS) NMR spectroscopy. Most likely the complexes decompose to $\gamma$ -Ga$_2$S$_3$ and then turn into GaN via amorphous gallium thionitrides (GaS$_x$N$_y$). The reactivity of Ga(DmDTC)$_3$ with ammonia was a little higher than that of Ga(DeDTC)$_3$. Room-temperature photoluminescence spectra of asprepared GaN powders exhibited the band-edge emission of GaN at 363 nm. GaN nanowires were obtained by nitridation of as-ground $\gamma$ -Ga$_2$S$_3$ powders to GaN powders, followed by sublimation without using templates or catalysts.

The effect of the processing parameters on the growth of GaN thick films by a sublimation technique (승화법에 의한 GaN 후막성장시 공정변수의 영향)

  • 노정현;박용주;이태경;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.235-240
    • /
    • 2003
  • The development of large area GaN substrates is one of important issues in expanding of GaN-based applications. In order to investigate the possibility, GaN thick films were grown by a sublimation technique, using MOCVD-GaN films grown on a sapphire as a seed-crystal substrate and a commercial GaN powder as a source material. The pressure in chamber under the fixed flow rate of $N_2$ gas and $NH_3$ gas was kept at 1 atmosphere and the effects of the various processing parameters such as the distance between source material and seed crystal, the temperature of top- and bottom heater and the growth time during the growth of GaN thick film were investigated. The growth feature and microstructure of the GaN thick films were observed by SEM and XRD. The optical bandgap properties and the defects were evaluated by the PL measurement. By these results, the growth conditions such as the distance between the GaN source and the seed substrate, the growth temperature and the growth time were determined for the satisfied growth of GaN thick films.

Antimony Surfactant Effect on p-GaN growth by Metal Organic Chemical Vapor Deposition (MOCVD)

  • Lee, Yeong-Gon;Sadasivam, Karthikeyan Giri;Baek, Gwang-Seon;Kim, Bong-Jun;Kim, Hak-Jun;Lee, Jun-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.56.2-56.2
    • /
    • 2010
  • An improvement in the optical and structural properties of p-GaN was obtained by using antimony (Sb) as a surfactant during p-GaN growth. Two different growth temperatures of p-GaN such as $1030^{\circ}C$ and $900^{\circ}C$ were considered. Keeping the growth conditions for p-GaN constant, Sb was introduced during p-GaN growth while varying the [Sb]/([Ga]+[Mg]) flow ratio. [Sb]/([Ga]+[Mg]) flow ratio will be denoted as SGM ratio for convenience. SGM ratio of 0, 0.015 and 0.03% were considered for high temperature p-GaN growth. SGM ratio of 0, 0.005, 0.01 and 0.02% were considered for low temperature p-GaN growth. The analysis results suggest that using the optimum SGM ratio during p-GaN growth greatly improves the optical and structural properties of the p-GaN.

  • PDF

Investigation of Ohmic Contact for $n^+$-GaN/AlGaN/GaN HFET ($n^+$-GaN/AlGaN/GaN HFET 제작을 위한 오믹접촉에 관한 연구)

  • 정두찬;이재승;이정희;김창석;오재응;김종욱;이재학;신진호;신무환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • The optimal high temperature processing conditions for the formation of Ohmic contact of Ti/Al/Pt/Au multiple layers were established for the fabrication of n$^{+}$-GaN/AlGaN/GaN HFET device. Contact resistivity as low as 3.4x10$^{-6}$ ohm-$\textrm{cm}^2$ was achieved by the annealing of the sample at 100$0^{\circ}C$ for 10 sec. using the RTA (Rapid Thermal Annealing) system. The fabricated HFET (Heterostructure Field Effect Transistor) with a structure of n'-GaN/undoped AlGaN/undoped GaN exhibited a low knee voltage of 3.5 V and a maximum source-drain current density of 180 mA/mm at Vg=0V.V.

  • PDF

Simulation Study on Heterojunction InGaP/InAlGaP Solar Cell (InGaP/InAlGaP 이종 접합구조 태양전지 시뮬레이션 연구)

  • Kim, Junghwan
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.162-167
    • /
    • 2013
  • An epitaxial layer structure for heterojunction p-InGaP/N-InAlGaP solar cell has proposed. Simulation for current density-voltage characteristics has been performed on p-InGaP/N-InAlGaP structure and the simulation results were compared with p-InGaP/p-GaAs/N-InAlGaP structure and homogeneous InGaP pn junction structure. The simulation result showed that the maximum output power and fill factor have greatly increased by replacing n-InGaP with N-InAlGaP. The thicknesses of p-InGaP and n-InAlGaP were optimized for the epitaxial layer structure of p-InGaP/N-InAlGaP.

DC and RF Characteristics of AlGaN/InGaN HEMTs Grown by Plasma-Assisted MBE (AlGaN/InGaN HEMTs의 고성능 초고주파 전류 특성)

  • 이종욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.752-758
    • /
    • 2004
  • This paper reports on the DC and RF characteristics of AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beau epitaxy(MBE) on sapphire substrates. The devices with a 0.5 ${\mu}$m gate-length exhibited relatively flat transconductance(g$\_$m/), which results from the enhanced carrier confinement of the InGaN channel. The maximum drain current was 880 mA/mm with a peak g$\_$m/ of 156 mS/mm, an f$\_$T/ of 17.3 GHz, and an f$\_$MAX/ or 28.7 GHz. In addition to promising DC and RF results, pulsed I-V and current-switching measurements showed little dispersion in the unpassivated AlGaN/InGaN HEMTs. These results suggest that the addition of In to the GaN channel improves the electron transport characteristics as well as suppressing current collapse that is related to the surface trap states.

Novel Activation by Electrochemical Potentiostatic Method

  • Lee, Hak-Hyeong;Lee, Jun-Gi;Jeong, Dong-Ryeol;Gwon, Gwang-U;Kim, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

Gate Field Alleviation by graded gate-doping in Normally-off p-GaN/AlGaN/GaN Hetrojunction FETs (상시불통형 p-GaN/AlGaN/GaN 이종접합 트랜지스터의 게이트막 농도 계조화 효과)

  • Cho, Seong-In;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1167-1171
    • /
    • 2020
  • In this work, we proposed a graded gate-doping structure to alleviate an electric field in p-GaN gate layer in order to improve the reliability of normally-off GaN power devices. In a TCAD simulation by Silvaco Atlas, a distribution of the graded p-type doping concentration was optimized to have a threshold voltage and an output current characteristics as same as the reference device with a uniform p-type gate doping. The reduction of an maximum electric field in p-GaN gate layer was observed and it suggests that the gate reliability of p-GaN gate HFETs can be improved.