• Title/Summary/Keyword: G-KKM

Search Result 11, Processing Time 0.016 seconds

COMMENTS ON GENERALIZED R-KKM TYPE THEOREMS

  • Park, Se-Hie
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.303-311
    • /
    • 2010
  • Recently, some authors [3, 4, 11, 12, 15] adopted the concept of the so-called generalized R-KKM maps which are used to rewrite known results in the KKM theory. In the present paper, we show that those maps are simply KKM maps on G-convex spaces. Consequently, results on generalized R-KKM maps follow the corresponding previous ones on G-convex spaces.

REMARKS ON THE KKM STRUCTURES OF KHANH AND QUAN

  • Sehie Park
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.123-134
    • /
    • 2023
  • Since Knaster, Kuratowski, and Mazurkiewicz established their KKM theorem in 1929, it was first applied to topological vector spaces mainly by Fan and Granas. Later it was extended to convex spaces by Lassonde and to extensions of c-spaces by Horvath. In 1992, such study was called the KKM theory by ourselves. Then the theory was extended to generalized convex spaces or G-convex spaces. Motivated by such spaces, there have appeared several particular types of artificial spaces. In 2006 we introduced abstract convex spaces which contain all existing spaces appeared in the KKM theory. Later in 2014-2020, Khahn and Quan introduced "topologically based existence theorems" and the so-called KKM structure. In the present paper, we show that their structure is a particular type of already known KKM spaces.

BEST APPROXIMATIONS FOR MULTIMAPS ON ABSTRACT CONVEX SPACES

  • Park, Sehie
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.165-175
    • /
    • 2021
  • In this article we derive some best approximation theorems for multimaps in abstract convex metric spaces. We are based on generalized KKM maps due to Kassay-Kolumbán, Chang-Zhang, and studied by Park, Kim-Park, Park-Lee, and Lee. Our main results are extensions of a recent work of Mitrović-Hussain-Sen-Radenović on G-convex metric spaces to partial KKM metric spaces. We also recall known works related to single-valued maps, and introduce new partial KKM metric spaces which can be applied our new results.

REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES

  • KIM HOONJOO;PARK SEHIE
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.101-110
    • /
    • 2005
  • Let (X, D; ${\Gamma}$) be a G-convex space and Y a Hausdorff space. Then $U^K_C$(X, Y) ${\subset}$ KD(X, Y), where $U^K_C$ is an admissible class (dup to Park) and KD denotes the class of multimaps having the KKM property for open-valued multimaps. This new result is used to obtain a KKM type theorem, matching theorems, a fixed point theorem, and a coincidence theorem.

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

일반화 볼록공간에서의 평형문제들

  • 박세희
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.197-231
    • /
    • 2000
  • 평형문제들에서의 기본적인 정리들이 일반화 볼록공간에서 어떻게 확장되는가를 보인다. KKM 이론의 중요한 정리들 대부분이 위상벡터공간에서의 선형성을 가정하지 않아도 위상적인 성질만으로 성립한다. 이같은 정리들의 예로는 KKM정리, von Neumann의 최소최대정리와 교차정리, Nash의 평형정리, 여러 가지 부동점정리, 극대원정리, Ky Fan의 최소최대부등식, 변분부등식들, 최량근사정리, 일반화 의사평형문제들의 해의 존재정리들이 있다.

  • PDF

COINCIDENCE THEOREMS ON A PRODUCT OF GENERALIZED CONVEX SPACES AND APPLICATIONS TO EQUILIBRIA

  • Park, Se-Hie;Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.813-828
    • /
    • 1999
  • In this paper, we give a Peleg type KKM theorem on G-convex spaces and using this, we obtain a coincidence theorem. First, these results are applied to a whole intersection property, a section property, and an analytic alternative for multimaps. Secondly, these are used to proved existence theorems of equilibrium points in qualitative games with preference correspondences and in n-person games with constraint and preference correspondences for non-paracompact wetting of commodity spaces.

  • PDF