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Abstract. Since Knaster, Kuratowski, and Mazurkiewicz established their KKM theorem

in 1929, it was first applied to topological vector spaces mainly by Fan and Granas. Later

it was extended to convex spaces by Lassonde and to extensions of c-spaces by Horvath. In

1992, such study was called the KKM theory by ourselves. Then the theory was extended

to generalized convex spaces or G-convex spaces. Motivated by such spaces, there have

appeared several particular types of artificial spaces. In 2006 we introduced abstract convex

spaces which contain all existing spaces appeared in the KKM theory. Later in 2014-2020,

Khahn and Quan introduced “topologically based existence theorems” and the so-called

KKM structure. In the present paper, we show that their structure is a particular type of

already known KKM spaces.

1. Introduction

Since Knaster, Kuratowski, and Mazurkiewicz established their KKM theo-
rem in 1929, it was first applied to topological vector spaces mainly by Fan and
Granas. Later it was extended to convex spaces by Lassonde and to extensions
of c-spaces by Horvath. In 1992, such study was first called the KKM theory
by ourselves. Then the theory was extended to generalized convex spaces or
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G-convex spaces. Motivated by such spaces, there have appeared several par-
ticular types of artificial spaces. In order to unify them, in 2006, we introduced
abstract convex spaces which contain all existing spaces appeared in the KKM
theory. For such history, see [19].

Later in 2014-2020, Khahn and Quan [2, 3, 4] introduced “topologically
based existence theorems” and the so-called KKM structure. In the present
article, we show that their structure is a particular type of already known
KKM spaces and their works can be extended to more general spaces.

This article is organized as follows: Section 2 is a preliminary on our abstract
convex spaces based mainly on Lu-Zhang-Li [7] in 2021. In Section 3, we recall
some subclasses of abstract convex spaces such as G-convex spaces and φA-
spaces, which are renamed G-spaces and F-spaces, respectively, in this article.
Section 4 deals with basic KKM theorems for abstract convex spaces. They
extend most of known generalizations of the original KKM theorem in 1929.
In Section 5, we are concerned with the so-called KKM structure of Khanh-
Quan [2, 3, 4] appeared in 2014-2020. We show that their KKM structure is
nothing but the F-space. Section 6 deals with our previous critical works on
modifications, imitations, or extensions of G-spaces. Finally, Section 7 is for
the conclusion with some additional remarks.

2. Abstract convex spaces

In this section, we introduce some basic definitions related to abstract con-
vex spaces according to Lu-Zhang-Li [7] based our earlier works. For more
details, the reader may refer to our works mentioned in [19].

Throughout this paper, 〈D〉 denotes the set of all nonempty finite subsets
of a set D.

Definition 2.1. ([9]) If E is a topological space, D is a nonempty set, and
Γ : 〈D〉 ( E is a multimap with nonempty values ΓA := Γ(A) for every
A ∈ 〈D〉, then the triple (E,D; Γ) is called an abstract convex space. When
E = D, we denote (E,E; Γ) by (E; Γ).

Definition 2.2. ([9]) Given an abstract convex space (E,D; Γ) and a nonempty
subset D′ of D, we define the Γ-convex hull of D′ by

coΓ(D′) =
⋃
{ΓA : A ∈ 〈D′〉}.

Definition 2.3. ([9]) Let (E,D; Γ) be an abstract convex space. A nonempty
subset E′ of E is called a Γ-convex subset of (E,D; Γ) relative to a nonempty
subset D′ of D if we have ΓN ⊂ E′ for every N ∈ 〈D′〉, that is, coΓ(D′) ⊂ E′.
In case E = D, a nonempty subset E′ of E is said to be Γ-convex if coΓ(E′) ⊂
E′, that is, E′ is Γ-convex relative to itself.
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Remark 2.4. Given an abstract convex space (E,D; Γ), by Definition 2.3, we
can see that if a nonempty subset E′ of E is a Γ-convex subset of (E,D; Γ)
relative to a nonempty subset D′ of D, then (E′, D′; Γ|〈D′〉) itself is an abstract
convex space which is called a subspace of (E,D; Γ).

Definition 2.5. ([9]) Let (E,D; Γ) be an abstract convex space and Z be
a set. For a multimap H : E ( Z with nonempty values, if a multmap
G : D ( Z satisfies H(ΓA) ⊂ G(A) for every A ∈ 〈D〉, then G is called a
KKM map with respect to H. A KKM map G : D( E is a KKM map with
respect to the identity mapping 1E .

Definition 2.6. ([19]) Let (E,D; Γ) be an abstract convex space and Z a
topological space. For a multimap F : E ( Z with nonempty values, if a
multimap G : D( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D( E is
a KKM map with respect to the identity map 1E .

A multimap F : E ( Z is called a KC-map [resp. a KO-map] if, for any
closed-valued [resp. open-valued] KKM map G : D ( Z with respect to F ,
the family {G(y)}y∈D has the finite intersection property. In this case, we
denote F ∈ KC(E,D,Z) [resp. F ∈ KO(E,D,Z)].

3. Subclasses of abstract convex spaces

We give some classical definitions of subclasses of abstract convex spaces;
see [18, 19]:

Definition 3.1. A generalized convex space or a G-convex space (X,D; Γ)
consists of a topological space X, a nonempty set D, and a map Γ : 〈D〉( X
such that for each A ∈ 〈D〉 with the cardinality |A| = n + 1, there exists a
continuous function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J) ⊂
Γ(J).

Here, ∆n = co{ei}ni=0 is the standard n-simplex, and ∆J the face of ∆n cor-
responding to J ∈ 〈A〉, that is, ifA = {a0, a1, · · · , an} and J = {ai0 , ai1 , · · · , aik}
⊂ A, then ∆J = co{ei0 , ei1 , · · · , eik}. We may write (X,Γ) = (X,X; Γ).

Definition 3.2. A space having a family {φA}A∈〈D〉 or simply a φA-space

(X,D; {φA}A∈〈D〉)
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consists of a topological space X, a nonempty set D, and a family of continuous
functions φA : ∆n → X (that is, singular n-simplices) for A ∈ 〈D〉 with the
cardinality |A| = n+ 1.

In the present article, G-convex spaces and φA-spaces will be called G-spaces
and F-spaces, resp., for simplicity.

Definition 3.3. The partial KKM principle for an abstract convex space
(E,D; Γ) is the statement 1E ∈ KC(E,D,E); that is, for any closed-valued
KKM map G : D( E, the family {G(y)}y∈D has the finite intersection prop-
erty. The KKM principle is the statement 1E ∈ KC(E,D,E) ∩ KO(E,D,E);
that is, the same property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satisfies the
(partial) KKM principle, respectively.

Now we have the following diagram for subclasses of abstract convex spaces
(E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space

=⇒ Horvath space =⇒ G-space =⇒ F-space =⇒ KKM space
=⇒ Partial KKM space =⇒ Abstract convex space.

Each subclass has a large number of concrete examples; see [19, 20]. For
the relatively new Horvath spaces, see [21].

4. Basic KKM theorems for abstract convex spaces

We defined a subspace of an abstract convex space and KC-maps on sub-
spaces in Section 2. The following generalize [9, Proposition 2], resp., with a
slightly modified proof:

Lemma 4.1. Let (E,D; Γ) be an abstract convex space, (X,D′; Γ′) a subspace,
and Z a topological space. If F ∈ K(E,Z), then F |X ∈ K(X,Z), where K
denotes KC or KO.

In the present section, we consider further properties of partial KKM spaces.
The following equivalent form of [13, Theorem 3] is basic:

Theorem 4.2. (Generalized partial KKM principle) Let (E,D; Γ) be a partial
KKM space and G : D( E a map such that

(1) G is closed-valued;
(2) G is a KKM map (that is, ΓA ⊂ G(A) for all A ∈ 〈D〉); and
(3) there exists a nonempty compact subset K of E such that one of the

following holds:
(i) K = E;
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(ii) K =
⋂
{G(z) | z ∈M} for some M ∈ 〈D〉; or

(iii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of
E relative to some D′ ⊂ D such that N ⊂ D′ and

LN ∩
⋂
z∈D′

G(z) ⊂ K.

Then K ∩
⋂
{G(z) | z ∈ D} 6= ∅.

Proof. Case (i): In this case every G(y) is compact. Hence Case (i) reduces
to (ii).

Case (ii): Since {G(z) | z ∈ D} has the finite intersection property, so does
{K ∩G(z) | z ∈ D} in the compact set K. Hence it has the whole intersection
property.

Case (iii): Suppose that K ∩
⋂
{G(z) | z ∈ D} =; that is, K ⊂

⋃
{X \

G(z) | z ∈ N} for some N ∈ 〈D〉. Let LN be the compact Γ-convex subset
of E in (iii). Define G′ : D′ ( LN by G′(z) := G(z) ∩ LN for z ∈ D′.
Then A ∈ 〈D′〉 implies Γ′

A := ΓA ∩ LN ⊂ G(A) ∩ LN = G′(A) by (2); and
hence G′ : D′( LN is a KKM map on (LN , D

′; Γ′) with closed values. Since
(X,D; Γ) satisfies the partial KKM principle, so does (LN , D

′; Γ′) by Lemma
4.1. Hence, {G′(z) | z ∈ D′} has the finite intersection property. Since LN is
compact, and

⋂
{G′(z) | z ∈ D′} 6= by Case (i). For any y ∈

⋂
{G′(z) | z ∈ D′},

we have y ∈ K by (ii). However, since y ∈ K ⊂
⋃
{X \ G(z) | z ∈ N}, we

have y /∈ G(z) for some z ∈ N ⊂ D′. This is a contradiction. Therefore, we
must have K ∩

⋂
{G(z) | z ∈ D} 6= ∅. �

Recall that conditions (i)-(iii) in Theorem 4.2 are usually called the com-
pactness conditions or the coercivity conditions. More formally we define as
follows:

Definition 4.3. For an abstract convex space (E,D; Γ) and a closed-valued
map G : D ( E, a coercivity condition for G is the one guaranteeing the
whole intersection property of the family {G(y)}y∈D whenever it has the finite
intersection property.

Example 4.4. Theorem 4.2 shows that each of (i)-(iii) is a coercivity condition
for any (E,D; Γ) and any G. There appeared several hundred particular cases
of the condition (iii).

For particular spaces and particular maps, we may have another coercivity
conditions; for example, see [13].

Consider the following related four conditions for a map G : D( Z with a
topological space Z:

(a)
⋂

y∈DG(y) 6= ∅ implies
⋂

y∈DG(y) 6= ∅.
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(b)
⋂

y∈DG(y) =
⋂

y∈DG(y) (G is intersectionally closed-valued).

(c)
⋂

y∈DG(y) =
⋂

y∈DG(y) (G is transfer closed-valued).

(d) G is closed-valued.

Luc et al. in 2010 noted that (a)⇐= (b)⇐= (c)⇐= (d), and gave examples
of multimaps satisfying (b) but not (c).

The following is Theorem C in [16], which is equivalent to Theorem 4.2:

Theorem 4.5. Let (E,D; Γ) be an abstract convex space, Z a topological
space, F ∈ KC(E,D,Z), and G : D( Z a map such that

(1) G is a KKM map w.r.t. F ; and
(2) there exists a nonempty compact subset K of Z such that either

(i)
⋂
{G(y) | y ∈M} ⊂ K for some M ∈ 〈D〉; or

(ii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of E relative

to some D′ ⊂ D such that N ⊂ D′, F (LN ) is compact, and

F (LN ) ∩
⋂
y∈D′

G(y) ⊂ K.

Then we have
F (E) ∩K ∩

⋂
y∈D

G(y) 6= ∅.

Furthermore,

(a) if G is transfer closed-valued, then

F (E) ∩K ∩
⋂
{G(y) | y ∈ D} 6= ∅ :

(b) if G is intersectionally closed-valued, then⋂
{G(y) | y ∈ D} 6= ∅.

Note that Theorem 4.5 has hundreds of particular forms.

5. The KKM structure of Khanh and Quan

Recently, Khanh and Quan [4] introduced the following:

Let E be a topological vector space with a topology TE . Then, to any finite
subset N = {x0, . . . , xn} of E, we associate the following continuous map
σN : ∆|N | → E

σN (e) = x :=

n∑
i=0

λixi for all e =

n∑
i=0

λiei ∈ ∆|N |.

Let ΣE = {σN |N ∈ 〈E〉}. Then, the pair (ΣE , TE) defines the usual convexity
structure on E in the sense that a subset K of E is convex if and only if for
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all σN ∈ ΣE and M ⊂ N ∩ K, σN (∆M ) ⊂ K. Thus we can view (ΣE , TE)
as the usual convexity structure on K. Generalizing this for any sets leads to
the following definition.

Definition 5.1. ([2, 3, 4]) A pair F := (ΣX , TY ) is called a KKM structure
of the pair of sets (X,Y ) if TY is a topology on Y and ΣX := {σN : ∆|N | →
Y | N ∈ 〈X〉} is a family of maps such that each σN ∈ ΣX is TY -continuous.
In the special case X = Y , such a F is termed a KKM structure of X. If
TY is compact, that is, Y is TY -compact, (ΣX , TY ) is called a compact KKM
structure.

After giving some examples, the authors noted that:

Note that in some spaces, introduced by many authors, such as a convex
space, H-space, G-convex space, FC-space, GFC-space and so on, there is
a KKM structure implicitly. However, in applications building such spaces
may be much more difficult than using a KKM structure. Moreover, we can
flexibly choose suitable KKM structures depending on situations. This also is
crucial for getting full characterizations (not merely sufficient conditions) for
the existence of important points in mathematical analysis and optimization-
related problems.

In this paper, we try to provide topologically based existence theorems, uni-
fying both the mentioned directions. Moreover, most of the above-encountered
results are only sufficient conditions for existence. Inspired by the papers [5]
and [6], we focus on necessary and sufficient conditions. Furthermore, for the
purpose of unification, we pay attention to the equivalence of the existence of
different kinds of points in both KKM structures and connectedness structures.

Now we reformulate Definition 5.1 as follows:

Definition 5.2. A pair F := (TE ,ΣD) is called a KKM structure of the pair
of sets (E,D) if TE is a topology on E and ΣD := {σN : ∆|N | → E | N ∈ 〈D〉}
is a family of maps such that each σN ∈ ΣD is TE-continuous. In the special
case E = D, such a F is termed a KKM structure of E. If TE is compact,
that is, E is TE-compact, (ΣD, TE) is called a compact KKM structure.

Note that (1) each KKM structure leads to an abstract convex space, (2)
we gave already a large number of examples of abstract convex spaces, and
(3) some of them can be examples of KKM structures.

In order to simplify the KKM structure, we have the following:

Lemma 5.3. A pair (E,D) has a KKM structure F := (TE ,ΣD) if and only
if we have an F-space (E,D; ΣD).

Proof. Note that ΣD is a family of continuous functions φA : ∆n → X for
A ∈ 〈D〉 with the cardinality |A| = n+ 1. �
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Consequently, the study on the KKM structures is the one for corresponding
F-spaces or GFC-spaces.

Theorem 5.4. A multimap T : D( E between two nonempty sets D and E
has intersection points, that is,

⋂
x∈D T (x) 6= ∅, if and only if there exists a

partial KKM space (E,D; Γ) such that

(1) T is a KKM map (that is, ΓN ⊂ T (N) for each N ∈ 〈D〉);
(2) the values of T are nonempty and closed;
(3)

⋂
x∈N0

T (x) is compact for some N0 ∈ 〈X〉.

Proof. (=⇒): Assume that
⋂

x∈D T (x) 6= ∅. Then there exists ȳ ∈
⋃

x∈D T (x).
Let F := (ΣX , TY ) be defined by ΣX = {σN : ∆|N | → Y |σN (e) = ȳ for all
e ∈ ∆|N |, N ∈ 〈X〉} and TY = {U + Y |ȳ /∈ U} ∪ {Y }. It is not hard to check
that (1)-(3) in Theorem 5.4 hold.

(⇐=): A consequence of Case (ii) of our Theorem 4.2 (Generalized partial
KKM principle). �

The proof of Only if part is just Khanh-Quan’s proof of the following The-
orem 2.6 of [4]:

Corollary 5.5. ([4]) A multimap T : X ( Y between two nonempty sets X
and Y has intersection points, that is,

⋂
x∈X T (x) 6= ∅, if and only if there

exists a KKM structure F := (ΣX , TY ) of (X,Y ) such that

(1) for all σN ∈ ΣX and M ⊂ N, σN (∆M ) ⊂
⋃

x∈M T (x);
(2) the values of T are nonempty and TY -closed;
(3)

⋂
x∈N0

T (x) is TY -compact for some N0 ∈ 〈X〉.

The well-known Knaster-Kuratowski-Mazurkiewicz (KKM) Theorem in 1929
was extended by Ky Fan in 1961 [1] as the following consequence of Theorem
5.4:

The 1961 KKM Lemma. (Fan [1]) Let X be an arbitrary set in a Hausdorff
topological vector space Y . To each x ∈ X, let a closed set F (x) in Y be given
such that the following two conditions are satisfied:

(i) convex hull of any finite subset {x1, · · · , xn} of X is contained in⋃n
i=1 F (xi).

(ii) F (x) is compact for at least one x ∈ X.

Then
⋂

x∈X F (x) 6= ∅.
This is usually known as the Fan-KKM lemma or the Fan-KKM theorem or

the KKMF theorem. Fan assumed the Hausdorffness of Y , which was known
to be superfluous later. Fan and his followers applied his KKM lemma to
various problems in many fields in mathematics; see [1, 19].
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6. Our previous studies on F-spaces and others

Since we began to study the KKM theory, we have been trying to improve
the theory in several occasions. Sometimes we criticized other authors’ inad-
equate works. Especially, we published several papers related F-spaces, that
is, φA-spaces of ourselves and GFC-spaces of Khanh et al.

In the following, we list the abstracts of our works on such matters in the
chronological order for the reader’s convenience:

(I) φA-spaces [10] in 2008: Basic results in the KKM theory on abstract
convex spaces and the KKM maps are applied to φA-spaces which unify various
imitations of G-convex spaces. We show that basic theorems on φA-spaces can
be applied to correct and improve results on the so-called R-KKM maps on
the so-called L-convex spaces.

(II) FC-spaces [11] in 2009: We show that FC-spaces due to Ding are par-
ticular types of L-spaces due to Ben-El-Mechaiekh et al., and hence particular
types of G-convex spaces. Some counter-examples are given and related mat-
ters are also discussed.

(III) Abstract convexity structures [12] in 2010: All results in “Some prop-
erties of abstract convexity structures on topological spaces” by S.-w. Xiang
and H. Yang [Some properties of abstract convexity structures on topological
spaces, Nonlinear Analysis 67 (2007) 803–808] and “A further characteristic of
abstract convexity structures on topological spaces” by S.-w. Xiang and S. Xia
[A further characteristic of abstract convexity structures on topological spaces,
J. Math. Anal. Appl. 335 (2007) 716–723] are shown to be consequences of
known ones or can be stated in more general forms.

(IV) Abstract convex spaces [13] in 2010: The partial KKM principle for an
abstract convex space is an abstract form of the classical KKM theorem. A
KKM space is an abstract convex space satisfying the partial KKM principle
and its “open” version. In this paper, we clearly derive a sequence of a dozen
statements which characterize the KKM spaces and equivalent formulations
of the partial KKM principle. As their applications, we add more than a
dozen statements including generalized formulations of von Neumann minimax
theorem, von Neumann intersection lemma, the Nash equilibrium theorem,
and the Fan type minimax inequalities for any KKM spaces. Consequently,
this paper unifies and enlarges previously known several proper examples of
such statements for particular types of KKM spaces.

(V) φA-spaces [15] in 2012: In our previous works, we showed that every
φA-space (X,D; {φA}A∈〈D〉) can be made into a G-convex space in several
ways. In this work, we show that a φA-space can be made into a G-convex
space (X,D; Γ) iff it has a KKM map G : D( X, and that it is a KKM space.
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Moreover, we show that recent examples of GFC-spaces due to Khanh et al.
and Ding are not adequate to claim that GFC-spaces or FC-spaces properly
include G-convex spaces.

(VI) FWC-spaces [17] in 2013: Recently, Lu and Zhang [CAMWA 64 (2012)
570–588] introduced the concepts of FWC-spaces (short form of finite weakly
convex spaces) as a unified form of many known modifications of G-convex
spaces, and the better admissible class of multimaps on them. In this pa-
per, we show that their FWC-spaces and their better admissible classes are
inadequately defined and that their results can not be true.

(VII) GFC-spaces [18] in 2013: Earlier we found that our φA-spaces can
be made into G-convex spaces in several ways and that GFC-spaces due to
Khanh et al. are all φA-spaces. Recently, they [JOTA 151: 552–572 (2011)]
gave an example of a GFC-space which is a ‘trivial’ G-convex space. In this
paper, we show that a GFC-space can be made into a nontrivial G-convex
space (X,D; Γ) iff it has a nontrivial KKM map G : D ( X. Consequently,
their example has only a trivial KKM map and is not adequate to show that
GFC-spaces properly extend G-convex spaces.

(VIII) GFC-spaces [18] in 2013: In the KKM theory, G-convex spaces are
extended to KKM spaces or abstract convex spaces in 2006. Various types of
φA-spaces (X,D; {φA}A∈〈D〉) appeared until 2007 can be made into G-convex
spaces in several ways. Moreover, various types of generalized KKM maps
on φA-spaces are simply KKM maps on G-convex spaces. Therefore, our G-
convex space theory can be applied to various types of φA-spaces. However,
Khanh et al. in 2009 introduced a disguised form of φA-spaces called GFC-
spaces. In the present paper, we review their works on GFC-spaces and clarify
that their basic results are consequences of known ones. Finally, further com-
ments on each of seven papers on GFC-spaces are given.

7. Conclusion

We began to initiate the KKM theory in 1992, to study G-spaces in 1993,
and to introduce abstract convex spaces in 2006. In 2021, we extended the
study to a large scaled logical system called the Grand KKM Theory [22]. In
such frame, we introduced various multimap classes, various types of (partial)
KKM spaces or abstract convex spaces, and hundreds of theorems on them.

In the present paper, we noticed that the KKM structure is restricted to F-
spaces (or GFC-spaces). Therefore facts or theorems on them can be extended
to more general other useful spaces like KKM spaces, partial KKM spaces, and
abstract convex spaces.
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Khanh and Quan claimed that their results is useful to show equivalent
conditions for the existence of certain points. However, as our Theorem 5.4
shows, such existence can be obtained by already known results. For any
abstract convex spaces (E,D; Γ), a topology TE of E and a multimap Γ :
〈D〉( E with nonempty values are already given.

The references [23]-[32] are the list of the author’s article appeared in NFAA
and closely related to the present article.

Acknowledgement: In this occasion, the author would like to express his
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