DOI QR코드

DOI QR Code

REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES

  • KIM HOONJOO (Department of Mathematics Education Daebul University) ;
  • PARK SEHIE (National Academy of Sciences Seoul National University)
  • Published : 2005.01.01

Abstract

Let (X, D; ${\Gamma}$) be a G-convex space and Y a Hausdorff space. Then $U^K_C$(X, Y) ${\subset}$ KD(X, Y), where $U^K_C$ is an admissible class (dup to Park) and KD denotes the class of multimaps having the KKM property for open-valued multimaps. This new result is used to obtain a KKM type theorem, matching theorems, a fixed point theorem, and a coincidence theorem.

Keywords

References

  1. M. Balaj, Applications of two matching theorems in generalized convex spaces, Nonlinear Anal. Forum 7 (2002), 123-130
  2. S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519
  3. S. Park, Coincidence theorems for the better admissible multimaps and their applications, Nonlinear Anal. 30 (1997), 4183-419 https://doi.org/10.1016/S0362-546X(97)00385-4
  4. S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 35 (1998), 803-829. Corrections
  5. S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 36 (1999), 829-832
  6. S. Park, Elements of the KKM theory for generalized convex spaces, Korean J. Comput. Appl. Math. 7 (2000), 1-28
  7. S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5 (2000), 67-79
  8. S. Park, New topological versions of the Fan-Browder fixed point theorem, Nonlinear Anal. 47 (2001), 595-606 https://doi.org/10.1016/S0362-546X(01)00204-8
  9. S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), 869-879 https://doi.org/10.1016/S0362-546X(00)00220-0
  10. S. Park, Coincidence, almost fixed point, and minimax theorems on generalized convex spaces, J. Nonlinear Convex Anal. 4 (2003), 151-164
  11. S. Park and H. Kim, Coincidences of composites of u.s.c. maps on H-spaces and applications, J. Korean Math. Soc. 32 (1995), 251-264
  12. S. Park and H. Kim, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 (1997), 551-571 https://doi.org/10.1006/jmaa.1997.5388
  13. S. Park and W. Lee, A unified approach to generalized KKM maps in generalized convex spaces, J. Nonlinear Convex Anal. 2 (2001), 157-166

Cited by

  1. Alternative principles and minimax inequalities in G-convex spaces vol.29, pp.5, 2008, https://doi.org/10.1007/s10483-008-0510-x
  2. Fixed Points and Existence Theorems of Maximal Elements with Applications inFC-Spaces vol.2011, 2011, https://doi.org/10.5402/2011/673591
  3. Fixed points, coincidence points and maximal elements with applications to generalized equilibrium problems and minimax theory vol.70, pp.1, 2009, https://doi.org/10.1016/j.na.2007.12.005
  4. Fixed point theorems for better admissible multimaps on abstract convex spaces vol.25, pp.1, 2010, https://doi.org/10.1007/s11766-010-2051-1
  5. COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS vol.49, pp.6, 2012, https://doi.org/10.4134/BKMS.2012.49.6.1147