• Title/Summary/Keyword: Fuzzy Integral

Search Result 304, Processing Time 0.027 seconds

FUZZY LINEARITY OF THE FUZZY INTEGRAL

  • Kim, Mi Hye;Shin, Seung Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 1999
  • We introduce a concept of fuzzy linearity: A function $F:L^0(X){\rightarrow}\mathbb{R}$ is fuzzy linear if $F[({\alpha}{\wedge}f){\vee}(b{\wedge}g)]=[a{\wedge}F(f)]{\vee}[b{\wedge}F(g)]$ for $f,g{\in}L^0(X)$ and a, b > 0. We show that a fuzzy integral is fuzzy linear if the measure is fuzzy c-additive.

  • PDF

MULTI-DIMENSIONAL LIU PROCESS, INTEGRAL AND DIFFERENTIAL

  • You, Cuilian;Huo, Huae;Wang, Weiqing
    • East Asian mathematical journal
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • As a fuzzy counterpart of stochastic calculus, fuzzy calculus including Liu integral and Liu formula were introduced. In order to deal with the problems with several fuzzy dynamic factors, Liu process, Liu integral and Liu formula are extended to the case of multi-dimensional in this paper.

NUMERICAL SOLUTION OF ABEL'S GENERAL FUZZY LINEAR INTEGRAL EQUATIONS BY FRACTIONAL CALCULUS METHOD

  • Kumar, Himanshu
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.527-545
    • /
    • 2021
  • The aim of this article is to give a numerical method for solving Abel's general fuzzy linear integral equations with arbitrary kernel. The method is based on approximations of fractional integrals and Caputo derivatives. The convergence analysis for the proposed method is also given and the applicability of the proposed method is illustrated by solving some numerical examples. The results show the utility and the greater potential of the fractional calculus method to solve fuzzy integral equations.

GENERALIZED FUZZY NUMBER VALUED BARTLE INTEGRALS

  • Park, Chun-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.37-49
    • /
    • 2010
  • In this paper we introduce the integration of scalar valued functions with respect to a generalized fuzzy number measure which we call the generalized fuzzy number valued Bartle integral. We first establish some properties of the generalized fuzzy number measures and then study the generalized fuzzy number valued Bartle integrals.

Takagi-Sugeno Fuzzy Integral Control for Asymmetric Half-Bridge DC/DC Converter

  • Chung, Gyo-Bum
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper, Takagi-Sugeno (TS) fuzzy integral control is investigated to regulate the output voltage of an asymmetric half-bridge (AHB) DC/DC converter; First, we model the dynamic characteristics of the AHB DC/DC converter with state-space averaging method and small perturbation at an operating point. After introducing an additional integral state of the output regulation error, we obtain the $5^{th}$-order TS fuzzy model of the AHB DC/DC converter. Second, the concept of the parallel distributed compensation is applied to design the fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, simulation results are presented to show the performance of the considered design method as the output voltage regulator and compared to the results for which the conventional loop gain method is used.

Non-Linearity of the Seminormed Fuzzy Integral (준노름 퍼지적분의 비 선형성)

  • Kim, Mi-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Let (X, F, g) be a fuzzy measure space. Then for any h$\in$ $L^{0}$ (X) , a$\in$[0 , 1] , and $A\in$F ∫$_{A}$aㆍh($\chi$)┬g=aㆍ∫$_{A}$h($\chi$)┬g with the t-seminorm ┬(x, y)= xy. And we prove that the Seminormed fuzzy integral has some linearity properties only for {0,1}-classes of fuzzy measure as follow, For any f, h$\in$ $L^{0}$ ($\chi$), any a, b$\in$R+: af+bh$\in$ $L^{0}$ ($\chi$)⇒ ∫$_{A}$(af+bh)┬g=a∫$_{A}$f┬g+b∫$_{A}$h┬g; if and only if g is a probability measure fulfilling g(A) $\in${0, 1} for all $A\in$F.n$F.

  • PDF