JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **32**, No. 1, February 2019 http://dx.doi.org/10.14403/jcms.2019.32.1.139

ON AP-HENSTOCK-STIELTJES INTEGRAL FOR FUZZY-NUMBER-VALUED FUNCTIONS ON INFINITE INTERVAL

GWANG SIK EUN* AND JU HAN YOON**

ABSTRACT. In this paper we introduce the AP-Henstock-Stieltjes integral for fuzzy-number-valued functions on infinite interval and investigate some properties.

1. Introduction and Preliminaries

It is well-known that the Henstock integral for real valued function was first defined by Henstock [2,3] in 1963. The Henstock integral is more powerful and simpler than the Lebesgue, Feynman integrals.

In 2012, Zengtai Gong and L. Wang introduced the concept of the Henstock-Stieltjes integrals of fuzzy-number-valued functions and obtained some properties([9]).

In this paper we introduce the concept of the AP-Henstock-Stieltjes integral of fuzzy-number-valued functions on infinite interval and investigate some properties.

A Henstock partition of [a, b] is a finite collection $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ such that $\{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ is a non-overlapping family of subintervals of [a, b] covering [a, b] and $\xi_i \in [x_{i-1}, x_i]$ for each $1 \le i \le n$. A gauge on [a, b] is a function $\delta : [a, b] \to (0, \infty)$. A Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ is said to be δ -fine on [a, b] if $[x_{i-i}, x_i] \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ for each $1 \le i \le n$.

Let α be an increasing function on [a, b]. A function $f : [a, b] \to R$ is said to be Henstock-Stieltjes integrable to $L \in R$ with respect to α on [a, b] if for every $\epsilon > 0$ there exists a positive function δ on [a, b] such

Received January 14, 2019; Accepted February 01, 2019.

²⁰¹⁰ Mathematics Subject Classification: Primary 12A34, 56B34; Secondary 78C34.

Key words and phrases: Fuzzy number, AP-Henstock-Stieltjes Integral .

^{**} The corresponding author.

that $|\sum_{i=1}^{n} f(\xi_i)(\alpha(v_i) - \alpha(u_i)) - L| < \epsilon$ whenever $P = \{([u_i, v_i], \xi_i) : 1 \le i \le n\}$ is a δ -fine Henstock partition of [a, b]. We denote this fact as $(HS) \int_a^b f(x) d\alpha = L$ and $f \in HS[a, b]$. The function f is Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if f_{χ_E} is Henstock-Stieltjes integrable with respect to α on [a, b], where χ_E denotes the characteristic function of E.

Fuzzy set $u : R \to [0, 1]$ is called a fuzzy number if u is a normal, convex fuzzy set, upper semi-continuous and supp $u = \overline{\{x \in R | u(x) > 0\}}$ is compact. Here \overline{A} denotes the closure of A. We use E^1 to denote the fuzzy number space ([9]).

Let $u, v \in E^1, k \in R$, the addition and scalar multiplication are defined by

$$[u+v]_{\lambda} = [u]_{\lambda} + [v]_{\lambda}, \ [ku]_{\lambda} = k[u]_{\lambda},$$

where $[u]_{\lambda} = \{x : u(x) \ge \lambda\} = [u_{\lambda}^{-}, u_{\lambda}^{+}]$ for any $\lambda \in [0, 1]$.

We use the Hausdorff distance between fuzzy numbers given by $D:E^1\times E^1\to [0,\,\infty)$ as follows

$$D(u,v) = \sup_{\lambda \in [0,1]} d([u]_{\lambda}, [v]_{\lambda}) = \sup_{\lambda \in [0,1]} \max\{|u_{\lambda}^{-} - v_{\lambda}^{-}|, |u_{\lambda}^{+} - v_{\lambda}^{+}|\},$$

where d is the Hausdorff metric. D(u, v) is called the distance between u and v.

A function $F : [a, b] \to E^1$ is said to be bounded if there exists $M \in R$ such that $||F(x)|| = D(F(x), 0) \le M$ for any $x \in [a, b]$.

LEMMA 1.1. ([9]) If $u \in E^1$, then

- (1) $[u]_{\lambda}$ is non-empty bounded closed interval for all $\lambda \in [0, 1]$.
- (2) $[u]_{\lambda_1} \supset [u]_{\lambda_2}$ for any $0 \le \lambda_1 \le \lambda_2 \le 1$.
- (3) for any $\{\lambda_n\}$ converging increasingly to $\lambda \in (0, 1]$,

$$\bigcap_{n=1}^{\infty} [u]_{\lambda_n} = [u]_{\lambda}.$$

Conversely, if for all $\lambda \in [0, 1]$, there exists $A_{\lambda} \subset R$ satisfying (1) ~ (3), then there exists a unique $u \in E^1$ such that $[u]_{\lambda} = A_{\lambda}, \lambda \in (0, 1]$, and $[u]_0 = \overline{\bigcup_{\lambda \in (0,1]} [u]_{\lambda}} \subset A_0$.

DEFINITION 1.2. ([9]) Let α be an increasing function on [a, b]. A fuzzy number-valued function F is Henstock-Stieltjes integrable with respect to α on [a, b] if there exists a fuzzy number $K \in E^1$ such that for every $\epsilon > 0$ there exists a positive function $\delta(x)$ such that

140

$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K) < \epsilon$$

whenever $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ is a δ -fine Henstock partition of [a, b]. We denote this fact as $(FHS) \int_a^b F(x) d\alpha = K$ and $(F, \alpha) \in FHS[a, b]$.

In this paper, \overline{R} denoted the extended real number and for the fuzzy number valued function F defined on $[a, \infty]$, we define $F(\infty) = 0$ and $0 \cdot \infty = 0$.

2. The fuzzy number-valued AP-Henstock-Stieltjes Integral

In this section, we will define the fuzzy number-valued AP-Henstock-Stieltjes integral on $[a, \infty]$, which is an extension of the fuzzy number-valued Riemann-Stieltjes integrals on infinite interval and investigate some of their properties.

Let E be a measurable set in \overline{R} and let $x \in \overline{R}$. The density of E at x is defined by

$$d_x E = \lim_{h \to 0+} \frac{\mu(E \cap (x - h, x + h))}{2h},$$

provided the limit exists. The point x is called a point of density of E if $d_x E = 1$. The E^d represents the set of all $x \in E$ such that x is a point of density of E.

An approximate neighborhood(or ap-nbd) of $x \in [a, b] \subset \overline{R}$ is a measurable set $S_x \subset [a, b]$ containing x as a point of density. For every $x \in E \subset [a, b]$, choose an ap-nbd $S_x \subset [a, b]$ of x and S_x is finite measurable set if $x \in R$. then we say that $S = \{S_x : x \in E\}$ is a choice on E. A tagged interval ([u, v], x) is said to fine to the choice $S = \{S_x\}$ if $u, v \in S_x$. Let $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ be a finite collection of non-overlapping tagged intervals. If all the members of $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ is fine to a choice S, then we say that P is S-fine. Let $E \subset [a, \infty]$. If P is S-fine and each $\xi_i \in E$, then P is called S-fine on E. If $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ is S-fine and $[a, \infty] = \bigcup_{i=1}^n [x_{i-1}, x_i]$, then we say that P is S-fine partition of $[a, \infty]$. Note that if $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ is S-fine partition of $[a, \infty]$, then $\xi_n = \infty$ and $[x_{n-1}, x_n]$ is infinite interval in $[a, \infty]$.

DEFINITION 2.1. ([8]) Let α be an increasing function on [a, b]. A fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with

respect to α on [a, b] if there exists a fuzzy number $K \in E^1$ such that for every $\epsilon > 0$ there exists a choice S on [a, b] such that

$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K) < \epsilon$$

whenever $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ is a S-fine Henstock partition of [a, b].

DEFINITION 2.2. Let α be an increasing function on $[a, \infty]$. A fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with respect to α on $[a, \infty]$ if there exists a fuzzy number $K \in E^1$ and $T \in R^+$ such that for every $\epsilon > 0$ there exists a choice S on $[a, \infty]$ such that

$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K) < \epsilon$$

whenever $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ is a S-fine Henstock partition on [a, b] of a finite interval $[a, b] \supset [a, \infty] \cap [-T, T]$. We write $(APFHS) \int_a^{\infty} F(x) d\alpha = K$ and $(F, \alpha) \in APFHS[a, \infty]$.

The definition of $(F, \alpha) \in APFHS[-\infty, a]$ is similar. Naturally $(F, \alpha) \in APFHS[-\infty, \infty]$ if and only if $(F, \alpha) \in APFHS[-\infty, a]$ and $(F, \alpha) \in APFHS[a, \infty]$, and then

$$\begin{aligned} APFHS) & \int_{-\infty}^{\infty} F(x) d\alpha \\ &= (APFHS) \int_{-\infty}^{a} F(x) d\alpha + (APFHS) \int_{a}^{\infty} F(x) d\alpha. \end{aligned}$$

The fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, \infty]$ if F_{χ_E} is AP-Henstock-Stieltjes integrable with respect to α on $[a, \infty]$, where χ_E denotes the characteristic function of E.

REMARK 2.3. If $F \in APFHS[a, \infty]$, then the integral value is unique.

From the definition of the fuzzy number-valued AP-Henstock-Stieltjes integral and the fact that (E^1, D) is a complete metric space, we can easily obtain the following theorem.

THEOREM 2.4. Let α be an increasing function on $[a, \infty]$. A fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with respect to α on $[a, \infty]$ if and only if for every $\epsilon > 0$ there exists a choice

142

(

S on $[a,\infty]$ such that for any $S\text{-fine partitions }P=\{([u,v],\xi)\}$ and $P'=\{([u',v'],\xi')\}$, we have

$$D(\sum_{P} F(\xi)(\alpha(v) - \alpha(u)), \sum_{P'} F(\xi')(\alpha(v') - \alpha(u'))) < \epsilon.$$

THEOREM 2.5. Let α be an increasing function on $[a, \infty]$ and let F be a fuzzy number-valued function on $[a, \infty]$. Then the following statements are equivalent:

- (1) $(F,\alpha) \in APFHS[a,\infty]$ and $(APFHS) \int_a^{\infty} F(x) d\alpha = K$.
- (2) For any b > a, $(F, \alpha) \in APFHS[a, b]$ and $\lim_{b\to\infty} (APFHS) \int_a^b F(x)d\alpha$ exists and then $\lim_{b\to\infty} (APFHS) \int_a^b F(x)d\alpha = (APFHS) \int_a^\infty F(x)d\alpha$.

Proof. (1) implies (2) : Since $(APFHS) \int_a^{\infty} F(x) d\alpha = K$, for any $\epsilon > 0$, there exists a choice S_1 on $[a, \infty]$ and $T \in R^+$ such that for any S_1 -fine partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ on [a, b] of a finite interval $[a, b] \supset [a, \infty] \cap [-T, T]$, we have

(2.1)
$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K) < \epsilon$$

For b>T , we find a choice S_2 on [a,b] such that for any $S_2\text{-fine}$ partition $P=\{([x_{i-1},x_i],\xi_i):1\leq i\leq n\}$ on [a,b]

(2.2)
$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), \int_a^b F(x)d\alpha) < \epsilon$$

Define $S = S_1 \cap S_2$ on [a, b] and let P be S-fine partition on [a, b]. then by (2.1) and (2.2)

$$D((APFHS)\int_{a}^{b}F(x)d\alpha, (APFHS)\int_{a}^{\infty}F(x)d\alpha) < 2\epsilon$$

Hence, $\lim_{b\to\infty} (APFHS) \int_a^b F(x) d\alpha = (APFHS) \int_a^\infty F(x) d\alpha$.

(2) implies (1) : Let $\lim_{b\to\infty}(APFHS)\int_a^bF(x)d\alpha=L$. Then for any $\epsilon>0,$ there exists $T\in R^+$ such that

(2.3)
$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), L) < \frac{\epsilon}{2}$$

for b > T. Let $\{b_n\}$ be a strictly increasing sequence with $b_1 = a$ and $\lim_{n\to\infty} b_n = \infty$.

For $\epsilon > 0$ there exists a choice S^n on $[b_n, b_{n+1}]$ such that for any S^n -fine partition P_n on $[b_n, b_{n+1}]$

(2.4)
$$D\left(\sum_{P_n} F(\xi)(\alpha(v) - \alpha(u)), (APFHS) \int_{b_n}^{b_{n+1}} F(x) d\alpha\right) < \frac{\epsilon}{2^{n+2}}$$

Define $S = \{ S_x : x \in [a, \infty] \}$ by $S_{\xi} \in S^n$ if $\xi \in [b_n, b_{n+1}], S_{\xi} \in (b_n, b_{n+1})$ if $\xi \in (b_n, b_{n+1})$ and $S_{\infty} = (T, \infty]$ if $\xi = \infty$.

Let b > T. Since $\lim_{n\to\infty} b_n = \infty$, there exists N such that $b_N < \infty$ $b \leq b_{N+1}$. Let $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ be a S-fine partition on [a, b]. Note that the partition P anchors on all b_n with $n \leq N$ and (2.5)A7 1

$$\sum_{P} F\chi_{[a,b]}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})) = \sum_{1}^{N-1} \sum_{P} F\chi_{[b_{n},b_{n+1}]}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})) + \sum_{P} F\chi_{[b_{N},b]}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})).$$

By (2.4),

(2.6)
$$D\Big(\sum_{P} F\chi_{[b_n,b_{n+1}]}(\xi_i)(\alpha(x_i) - \alpha(x_{i-1}), (APFHS)\int_{b_n}^{b_{n+1}} F(x)d\alpha\Big) < \frac{\epsilon}{2^{n+2}}$$

By (2.3), (2.5), (2.6) and Saks-Henstock lemma (lemma 2.8.1 in [7])

$$D\left(\sum_{i=1}^{n} F(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})), L)\right) < \frac{\epsilon}{2} + \frac{\epsilon}{4} \sum_{1}^{N-1} \frac{1}{2^{n}}$$
$$+ D\left(\sum_{P} F\chi_{[b_{N},b]}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})), (APFHS) \int_{b_{N}}^{b} F(x)d\alpha\right) < \epsilon.$$
Hence, $(F,\alpha) \in APFHS[a,\infty].$

THEOREM 2.6. Let α be an increasing function on $[a, \infty]$ and let F be a fuzzy number-valued function on $[a, \infty]$. Then the following statements are equivalent:

- (F, α) ∈ APFHS[a, ∞] and (APFHS) ∫_a[∞] F(x)dα = K.
 (Por any λ ∈ [0, 1], F_λ⁻ and F_λ⁺ are AP-Henstock-Stieltjes integrable functions with respect to α on [a, ∞] for λ ∈ [0, 1] uniformly (Choice S is independent of $\lambda \in [0, 1]$) and

$$\left[(APFHS)\int_{a}^{\infty}F(x)d\alpha\right]_{\lambda}$$

144

On AP-Henstock-Stieltjes integral for fuzzy-number-valued functions 145

$$= \left[(APHS) \int_{a}^{\infty} F_{\lambda}^{-}(x) d\alpha, (APHS) \int_{a}^{\infty} F_{\lambda}^{+}(x) d\alpha \right].$$

Proof. (1) implies (2) : Since $(APFHS) \int_a^{\infty} F(x) d\alpha = K$, for any $\epsilon > 0$, there exists a choice S on $[a, \infty]$ and $T \in R^+$ such that for any S-fine partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ on [a, b] of a finite interval $[a, b] \supset [a, \infty] \cap [-T, T]$, we have

$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K) < \epsilon$$

By definition of D, for any S-fine partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ on [a, b]

$$\sup_{\lambda \in [0,1]} \max \left\{ \left| \left[\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})) \right]_{\lambda}^{-} - K_{\lambda}^{-} \right|, \right. \\ \left| \left[\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})) \right]_{\lambda}^{+} - K_{\lambda}^{+} \right| \right\} < \epsilon.$$

Hence, we have

$$\left|\sum_{i=1}^{n} F_{\lambda}^{-}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})) - K_{\lambda}^{-}\right| < \epsilon,$$

$$\left|\sum_{i=1}^{n} F_{\lambda}^{+}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})) - K_{\lambda}^{+}\right| < \epsilon.$$

Therefore, $F_{\lambda}^{-}(x)$ and $F_{\lambda}^{+}(x)$ are AP-Henstock-Stieltjes with respect to α on $[a, \infty]$ for any $\lambda \in [0, 1]$, and

$$(APHS)\int_{a}^{\infty}F_{\lambda}^{-}(x)d\alpha = K_{\lambda}^{-}, \quad (APHS)\int_{a}^{\infty}F_{\lambda}^{+}(x)d\alpha = K_{\lambda}^{+}.$$

(2) implies (1) : Since $F_{\lambda}^{-}(x)$ and $F_{\lambda}^{+}(x)$ are AP-Henstock-Stieltjes integrable functions with respect to α on $[a, \infty]$ for any $\lambda \in [0, 1]$, for $\epsilon > 0$, there exists a choice S on $[a, \infty]$ and $T \in R^{+}$ such that for any S-fine partition $P = \{([x_{i-1}, x_i], x_i) : 1 \leq i \leq n\}$ on [a, b] of a finite interval $[a, b] \supset [a, \infty] \cap [-T, T]$ and for any $\lambda \in [0, 1]$, we have

$$\left|\sum_{i=1}^{n} F_{\lambda}^{-}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})) - K_{\lambda}^{-}\right| < \epsilon,$$

$$\left|\sum_{i=1}^{n} F_{\lambda}^{+}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})) - K_{\lambda}^{+}\right| < \epsilon.$$

Then we can prove that $\{[K_{\lambda}^{-}, K_{\lambda}^{+}] : \lambda \in [0, 1]\}$ satisfies the conditions of Lemma 1.1. By the Lemma 1.1, $\{[K_{\lambda}^{-}, K_{\lambda}^{+}] : \lambda \in [0, 1]\}$ determines a fuzzy number K. By the definition of D, for any S-fine partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ on [a, b], we obtain

$$D(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K) < 2\epsilon$$

Thus, $(F, \alpha) \in APFHS[a, \infty]$ and $(APFHS) \int_a^{\infty} F(x) d\alpha = K$. \Box

From theorem 2.6, the following theorem is obvious.

THEOREM 2.7. Let $F, G \in APFHS[a, \infty]$ and $\beta, \gamma \in R$. Then $\beta F + \gamma G \in APFHS[a, \infty]$ and

$$(APFHS)\int_{a}^{\infty}(\beta F + \gamma G)d\alpha = \beta(APFHS)\int_{a}^{\infty}Fd\alpha + \gamma(APFHS)\int_{a}^{\infty}Gd\alpha.$$

THEOREM 2.8. Let $F, G \in APFHS[a, \infty]$ and D(F, G) is Lebesgue-Stieltjes integrable on $[a, \infty]$. Then

$$D((APFHS)\int_{a}^{\infty} F \ d\alpha, (APFHS)\int_{a}^{\infty} G \ d\alpha) \le (L)\int_{a}^{\infty} D(F,G) \ d\alpha.$$

Proof. By definition of distance,

$$D((APFHS)\int_{a}^{\infty} Fd\alpha, (APFHS)\int_{a}^{\infty} Gd\alpha)$$

$$= \sup_{\lambda \in [0,1]} \max\left(|[((APHS)\int_{a}^{\infty} Fd\alpha)]_{\lambda}^{-} - [((APHS)\int_{a}^{\infty} Gd\alpha)]_{\lambda}^{-}|, |[((APHS)\int_{a}^{\infty} Fd\alpha)]_{\lambda}^{+} - [((APHS)\int_{a}^{\infty} Gd\alpha)]_{\lambda}^{+}|\right)$$

$$= \sup_{\lambda \in [0,1]} \max\left(|(APHS)\int_{a}^{\infty} ([F]_{\lambda}^{-} - [G]_{\lambda}^{-})d\alpha|, |(APHS)\int_{a}^{\infty} ([F]_{\lambda}^{+} - [G]_{\lambda}^{+})d\alpha|\right)$$

$$\leq \sup_{\lambda \in [0,1]} \max((L)\int_{a}^{\infty} |[F]_{\lambda}^{-} - [G]_{\lambda}^{-}|d\alpha, (L)\int_{a}^{\infty} |[F]_{\lambda}^{+} - [G]_{\lambda}^{+}|d\alpha)$$

$$\leq (LS)\int_{a}^{\infty} D(F,G)d\alpha.$$

146

On AP-Henstock-Stieltjes integral for fuzzy-number-valued functions 147

References

- A. Boccto, B. Riecan, On the Henstock-Kurzweil for Riesz-space-valued functions defined on unbounded intervals, Czechoslovak Math. J. 54 (2004), no. 3, 591–607.
- Ke-feng Duan, The Henstock-Stieltjes integral for fuzzy number-valued functions on a infinite interval, J. Computational Analysis and Applications, 20 (2016), 928–938.
- [3] K. S. Eun, J. H. Yoon, J. M. Park, and D. H. Lee, On Henstock integrals of interval-valued functions, Journal of the Chungcheoug Math. Soc. 25 (2012), 291–287.
- [4] Z. Gong and L. wang, On Henstock-Stieltjes integral for fuzzy number-valued functions, Information Siences, 188 (2012), 276–297.
- [5] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Studia Math. 92, 1994.
- [6] P. Y. Lee, Lanzhou Lectures in Henstock Integration, World Scientific, 1989.
- [7] P. Y. Lee and R. Vyborny, The integral: An easy approach after Kurzweil and Henstock, Cambridge Univ. Press, 2000.
- [8] Ju Han Yoon, The AP-Henstock-Stieltjes integral for fuzzy number-valued functions, Journal of the Chungcheoug Math. Soc. 31 (2018), no. 1, 151–160.
- [9] Ju Han Yoon, On convergence theorems of the AP-Henstock-Stieltjes integral for fuzzy number-valued functions, Journal of the Chungcheoug Math. Soc. 31 (2018), no. 3, 333–341.
- [10] Congxin Wu and Zengtai Gong, On Henstock integrals of interval-valued functions and fuzzy-valued functions, Fuzzy Sets and Systems, 115 (2000), 377–392.
- [11] Congxin Wu and Zengtai Gong, On Henstock integrals of fuzzy number-valued functions(I), Fuzzy Sets and Systems, 120 (2001), 523–532.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: eungs@cbnu.ac.kr

**

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: yoonjh@cbnu.ac.kr