ON AP-HENSTOCK-STIELTJES INTEGRAL FOR FUZZY-NUMBER-VALUED FUNCTIONS ON INFINITE INTERVAL

GWANG SIK EUN* and JU HAN YOON**

Abstract

In this paper we introduce the AP-Henstock-Stieltjes integral for fuzzy-number-valued functions on infinite interval and investigate some properties.

1. Introduction and Preliminaries

It is well-known that the Henstock integral for real valued function was first defined by Henstock [2,3] in 1963. The Henstock integral is more powerful and simpler than the Lebesgue, Feynman integrals.

In 2012, Zengtai Gong and L. Wang introduced the concept of the Henstock-Stieltjes integrals of fuzzy-number-valued functions and obtained some properties([9]).

In this paper we introduce the concept of the AP-Henstock-Stieltjes integral of fuzzy-number-valued functions on infinite interval and investigate some properties.

A Henstock partition of $[a, b]$ is a finite collection $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right)\right.$: $1 \leq i \leq n\}$ such that $\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is a non-overlapping family of subintervals of $[a, b]$ covering $[a, b]$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ for each $1 \leq i \leq n$. A gauge on $[a, b]$ is a function $\delta:[a, b] \rightarrow(0, \infty)$. A Henstock partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is said to be δ-fine on $[a, b]$ if $\left[x_{i-i}, x_{i}\right] \subset\left(\xi_{i}-\delta\left(\xi_{i}\right), \xi_{i}+\delta\left(\xi_{i}\right)\right)$ for each $1 \leq i \leq n$.

Let α be an increasing function on $[a, b]$. A function $f:[a, b] \rightarrow R$ is said to be Henstock-Stieltjes integrable to $L \in R$ with respect to α on $[a, b]$ if for every $\epsilon>0$ there exists a positive function δ on $[a, b]$ such

[^0]that $\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(\alpha\left(v_{i}\right)-\alpha\left(u_{i}\right)\right)-L\right|<\epsilon$ whenever $P=\left\{\left(\left[u_{i}, v_{i}\right], \xi_{i}\right)\right.$: $1 \leq i \leq n\}$ is a δ-fine Henstock partition of $[a, b]$. We denote this fact as $(H S) \int_{a}^{b} f(x) d \alpha=L$ and $f \in H S[a, b]$. The function f is Henstock-Stieltjes integrable with respect to α on a set $E \subset[a, b]$ if $f_{\chi_{E}}$ is Henstock-Stieltjes integrable with respect to α on $[a, b]$, where χ_{E} denotes the characteristic function of E.

Fuzzy set $u: R \rightarrow[0,1]$ is called a fuzzy number if u is a normal, convex fuzzy set, upper semi-continuous and supp $u=\overline{\{x \in R \mid u(x)>0\}}$ is compact. Here \bar{A} denotes the closure of A. We use E^{1} to denote the fuzzy number space ([9]).

Let $u, v \in E^{1}, k \in R$, the addition and scalar multiplication are defined by

$$
[u+v]_{\lambda}=[u]_{\lambda}+[v]_{\lambda}, \quad[k u]_{\lambda}=k[u]_{\lambda},
$$

where $[u]_{\lambda}=\{x: u(x) \geq \lambda\}=\left[u_{\lambda}^{-}, u_{\lambda}^{+}\right]$for any $\lambda \in[0,1]$.
We use the Hausdorff distance between fuzzy numbers given by D : $E^{1} \times E^{1} \rightarrow[0, \infty)$ as follows

$$
D(u, v)=\sup _{\lambda \in[0,1]} d\left([u]_{\lambda},[v]_{\lambda}\right)=\sup _{\lambda \in[0,1]} \max \left\{\left|u_{\lambda}^{-}-v_{\lambda}^{-}\right|,\left|u_{\lambda}^{+}-v_{\lambda}^{+}\right|\right\}
$$

where d is the Hausdorff metric. $D(u, v)$ is called the distance between u and v.

A function $F:[a, b] \rightarrow E^{1}$ is said to be bounded if there exists $M \in R$ such that $\|F(x)\|=D(F(x), 0) \leq M$ for any $x \in[a, b]$.

Lemma 1.1. ([9]) If $u \in E^{1}$, then
(1) $[u]_{\lambda}$ is non-empty bounded closed interval for all $\lambda \in[0,1]$.
(2) $[u]_{\lambda_{1}} \supset[u]_{\lambda_{2}}$ for any $0 \leq \lambda_{1} \leq \lambda_{2} \leq 1$.
(3) for any $\left\{\lambda_{n}\right\}$ converging increasingly to $\lambda \in(0,1]$,

$$
\bigcap_{n=1}^{\infty}[u]_{\lambda_{n}}=[u]_{\lambda} .
$$

Conversely, if for all $\lambda \in[0,1]$, there exists $A_{\lambda} \subset R$ satisfying (1) \sim (3), then there exists a unique $u \in E^{1}$ such that $[u]_{\lambda}=A_{\lambda}, \lambda \in(0,1]$, and $[u]_{0}=\overline{\cup_{\lambda \in(0,1]}[u]_{\lambda}} \subset A_{0}$.

Definition 1.2. ([9]) Let α be an increasing function on $[a, b]$. A fuzzy number-valued function F is Henstock-Stieltjes integrable with respect to α on $[a, b]$ if there exists a fuzzy number $K \in E^{1}$ such that for every $\epsilon>0$ there exists a positive function $\delta(x)$ such that

$$
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), K\right)<\epsilon
$$

whenever $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is a δ-fine Henstock partition of $[a, b]$. We denote this fact as $(F H S) \int_{a}^{b} F(x) d \alpha=K$ and $(F, \alpha) \in$ FHS[a, b].

In this paper, \bar{R} denoted the extended real number and for the fuzzy number valued function F defined on $[a, \infty]$, we define $F(\infty)=0$ and $0 \cdot \infty=0$.

2. The fuzzy number-valued AP-Henstock-Stieltjes Integral

In this section, we will define the fuzzy number-valued AP-HenstockStieltjes integral on $[a, \infty]$, which is an extension of the fuzzy numbervalued Riemann-Stieltjes integrals on infinite interval and investigate some of their properties.

Let E be a measurable set in \bar{R} and let $x \in \bar{R}$. The density of E at x is defined by

$$
d_{x} E=\lim _{h \rightarrow 0+} \frac{\mu(E \cap(x-h, x+h))}{2 h},
$$

provided the limit exists. The point x is called a point of density of E if $d_{x} E=1$. The E^{d} represents the set of all $x \in E$ such that x is a point of density of E.

An approximate neighborhood(or ap-nbd) of $x \in[a, b] \subset \bar{R}$ is a measurable set $S_{x} \subset[a, b]$ containing x as a point of density. For every $x \in E \subset[a, b]$, choose an ap-nbd $S_{x} \subset[a, b]$ of x and S_{x} is finite measurable set if $x \in R$. then we say that $S=\left\{S_{x}: x \in E\right\}$ is a choice on E. A tagged interval $([u, v], x)$ is said to fine to the choice $S=\left\{S_{x}\right\}$ if $u, v \in S_{x}$. Let $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ be a finite collection of non-overlapping tagged intervals. If all the members of $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is fine to a choice S, then we say that P is S-fine. Let $E \subset[a, \infty]$. If P is S-fine and each $\xi_{i} \in E$, then P is called S-fine on E. If $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is S-fine and $[a, \infty]=\cup_{i=1}^{n}\left[x_{i-1}, x_{i}\right]$, then we say that P is S-fine partition of $[a, \infty]$. Note that if $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is S-fine partition of $[a, \infty]$, then $\xi_{n}=\infty$ and $\left[x_{n-1}, x_{n}\right]$ is infinite interval in $[a, \infty]$.

Definition 2.1. ([8]) Let α be an increasing function on $[a, b]$. A fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with
respect to α on $[a, b]$ if there exists a fuzzy number $K \in E^{1}$ such that for every $\epsilon>0$ there exists a choice S on $[a, b]$ such that

$$
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), K\right)<\epsilon
$$

whenever $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is a S-fine Henstock partition of $[a, b]$.

Definition 2.2. Let α be an increasing function on $[a, \infty]$. A fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with respect to α on $[a, \infty]$ if there exists a fuzzy number $K \in E^{1}$ and $T \in R^{+}$ such that for every $\epsilon>0$ there exists a choice S on $[a, \infty]$ such that

$$
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), K\right)<\epsilon
$$

whenever $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ is a S-fine Henstock partition on $[a, b]$ of a finite interval $[a, b] \supset[a, \infty] \cap[-T, T]$. We write $(A P F H S) \int_{a}^{\infty} F(x) d \alpha=K$ and $(F, \alpha) \in A P F H S[a, \infty]$.

The definition of $(F, \alpha) \in A P F H S[-\infty, a]$ is similar. Naturally $(F, \alpha) \in A P F H S[-\infty, \infty]$ if and only if $(F, \alpha) \in A P F H S[-\infty, a]$ and $(F, \alpha) \in A P F H S[a, \infty]$, and then

$$
\begin{aligned}
& (A P F H S) \int_{-\infty}^{\infty} F(x) d \alpha \\
& \quad=(A P F H S) \int_{-\infty}^{a} F(x) d \alpha+(A P F H S) \int_{a}^{\infty} F(x) d \alpha .
\end{aligned}
$$

The fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with respect to α on a set $E \subset[a, \infty]$ if $F_{\chi_{E}}$ is AP-HenstockStieltjes integrable with respect to α on $[a, \infty]$, where χ_{E} denotes the characteristic function of E .

Remark 2.3. If $F \in A P F H S[a, \infty]$, then the integral value is unique.
From the definition of the fuzzy number-valued AP-Henstock-Stieltjes integral and the fact that $\left(E^{1}, D\right)$ is a complete metric space, we can easily obtain the following theorem.

Theorem 2.4. Let α be an increasing function on $[a, \infty]$. A fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with respect to α on $[a, \infty]$ if and only if for every $\epsilon>0$ there exists a choice
S on $[a, \infty]$ such that for any S-fine partitions $P=\{([u, v], \xi)\}$ and $P^{\prime}=\left\{\left(\left[u^{\prime}, v^{\prime}\right], \xi^{\prime}\right)\right\}$, we have

$$
D\left(\sum_{P} F(\xi)(\alpha(v)-\alpha(u)), \sum_{P^{\prime}} F\left(\xi^{\prime}\right)\left(\alpha\left(v^{\prime}\right)-\alpha\left(u^{\prime}\right)\right)\right)<\epsilon .
$$

Theorem 2.5. Let α be an increasing function on $[a, \infty]$ and let F be a fuzzy number-valued function on $[a, \infty]$. Then the following statements are equivalent:
(1) $(F, \alpha) \in A P F H S[a, \infty]$ and $(A P F H S) \int_{a}^{\infty} F(x) d \alpha=K$.
(2) For any $b>a,(F, \alpha) \in A P F H S[a, b]$ and $\lim _{b \rightarrow \infty}(A P F H S) \int_{a}^{b} F(x) d \alpha$ exists and then $\lim _{b \rightarrow \infty}(A P F H S) \int_{a}^{b} F(x) d \alpha=(A P F H S) \int_{a}^{\infty} F(x) d \alpha$.

Proof. (1) implies (2) : Since (APFHS) $\int_{a}^{\infty} F(x) d \alpha=K$, for any $\epsilon>0$, there exists a choice S_{1} on $[a, \infty]$ and $T \in R^{+}$such that for any S_{1}-fine partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ on $[a, b]$ of a finite interval $[a, b] \supset[a, \infty] \cap[-T, T]$, we have

$$
\begin{equation*}
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), K\right)<\epsilon \tag{2.1}
\end{equation*}
$$

For $b>T$, we find a choice S_{2} on $[a, b]$ such that for any S_{2}-fine partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ on $[a, b]$

$$
\begin{equation*}
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), \int_{a}^{b} F(x) d \alpha\right)<\epsilon \tag{2.2}
\end{equation*}
$$

Define $S=S_{1} \cap S_{2}$ on $[a, b]$ and let P be S-fine partition on $[a, b]$. then by (2.1) and (2.2)

$$
D\left((A P F H S) \int_{a}^{b} F(x) d \alpha,(A P F H S) \int_{a}^{\infty} F(x) d \alpha\right)<2 \epsilon
$$

Hence, $\lim _{b \rightarrow \infty}(A P F H S) \int_{a}^{b} F(x) d \alpha=(A P F H S) \int_{a}^{\infty} F(x) d \alpha$.
(2) implies (1): Let $\lim _{b \rightarrow \infty}(A P F H S) \int_{a}^{b} F(x) d \alpha=L$. Then for any $\epsilon>0$, there exists $T \in R^{+}$such that

$$
\begin{equation*}
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), L\right)<\frac{\epsilon}{2} \tag{2.3}
\end{equation*}
$$

for $b>T$. Let $\left\{b_{n}\right\}$ be a strictly increasing sequence with $b_{1}=a$ and $\lim _{n \rightarrow \infty} b_{n}=\infty$.

For $\epsilon>0$ there exists a choice S^{n} on $\left[b_{n}, b_{n+1}\right]$ such that for any S^{n}-fine partition P_{n} on $\left[b_{n}, b_{n+1}\right]$

$$
\begin{equation*}
D\left(\sum_{P_{n}} F(\xi)(\alpha(v)-\alpha(u)),(A P F H S) \int_{b_{n}}^{b_{n+1}} F(x) d \alpha\right)<\frac{\epsilon}{2^{n+2}} \tag{2.4}
\end{equation*}
$$

Define $S=\left\{S_{x}: x \in[a, \infty]\right\}$ by $S_{\xi} \in S^{n}$ if $\xi \in\left[b_{n}, b_{n+1}\right], S_{\xi} \in\left(b_{n}, b_{n+1}\right)$ if $\xi \in\left(b_{n}, b_{n+1}\right)$ and $S_{\infty}=(T, \infty]$ if $\xi=\infty$.

Let $b>T$. Since $\lim _{n \rightarrow \infty} b_{n}=\infty$, there exists N such that $b_{N}<$ $b \leq b_{N+1}$. Let $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ be a S-fine partition on $[a, b]$. Note that the partition P anchors on all b_{n} with $n \leq N$ and

$$
\begin{gather*}
\sum_{P} F \chi_{[a, b]}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)=\sum_{1}^{N-1} \sum_{P} F \chi_{\left[b_{n}, b_{n+1}\right]}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)\right. \tag{2.5}\\
+\sum_{P} F \chi_{\left[b_{N}, b\right]}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)
\end{gather*}
$$

By (2.4),
$D\left(\sum_{P} F \chi_{\left[b_{n}, b_{n+1}\right]}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right),(\right.\right.$ APFHS $\left.) \int_{b_{n}}^{b_{n+1}} F(x) d \alpha\right)<\frac{\epsilon}{2^{n+2}}$.
By (2.3), (2.5), (2.6) and Saks-Henstock lemma (lemma 2.8.1 in [7])

$$
\begin{gathered}
\left.D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), L\right)\right)<\frac{\epsilon}{2}+\frac{\epsilon}{4} \sum_{1}^{N-1} \frac{1}{2^{n}} \\
+D\left(\sum_{P} F \chi_{\left[b_{N}, b\right]}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right),(A P F H S) \int_{b_{N}}^{b} F(x) d \alpha\right)<\epsilon
\end{gathered}
$$

Hence, $(F, \alpha) \in A P F H S[a, \infty]$.
ThEOREM 2.6. Let α be an increasing function on $[a, \infty]$ and let F be a fuzzy number-valued function on $[a, \infty]$. Then the following statements are equivalent:
(1) $(F, \alpha) \in A P F H S[a, \infty]$ and $(A P F H S) \int_{a}^{\infty} F(x) d \alpha=K$.
(2) For any $\lambda \in[0,1], F_{\lambda}^{-}$and F_{λ}^{+}are AP-Henstock-Stieltjes integrable functions with respect to α on $[a, \infty]$ for $\lambda \in[0,1]$ uniformly (Choice S is independent of $\lambda \in[0,1]$) and

$$
\left[(A P F H S) \int_{a}^{\infty} F(x) d \alpha\right]_{\lambda}
$$

$$
=\left[(A P H S) \int_{a}^{\infty} F_{\lambda}^{-}(x) d \alpha,(A P H S) \int_{a}^{\infty} F_{\lambda}^{+}(x) d \alpha\right] .
$$

Proof. (1) implies (2) : Since (APFHS) $\int_{a}^{\infty} F(x) d \alpha=K$, for any $\epsilon>0$, there exists a choice S on $[a, \infty]$ and $T \in R^{+}$such that for any S-fine partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ on $[a, b]$ of a finite interval $[a, b] \supset[a, \infty] \cap[-T, T]$, we have

$$
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), K\right)<\epsilon
$$

By definition of D, for any S-fine partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq\right.$ $n\}$ on $[a, b]$

$$
\begin{aligned}
\sup _{\lambda \in[0,1]} \max & \left\{\left|\left[\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)\right]_{\lambda}^{-}-K_{\lambda}^{-}\right|,\right. \\
& \left.\left|\left[\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)\right]_{\lambda}^{+}-K_{\lambda}^{+}\right|\right\}<\epsilon .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left|\sum_{i=1}^{n} F_{\lambda}^{-}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)-K_{\lambda}^{-}\right|<\epsilon, \\
& \left|\sum_{i=1}^{n} F_{\lambda}^{+}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)-K_{\lambda}^{+}\right|<\epsilon
\end{aligned}
$$

Therefore, $F_{\lambda}^{-}(x)$ and $F_{\lambda}^{+}(x)$ are AP-Henstock-Stieltjes with respect to α on $[a, \infty]$ for any $\lambda \in[0,1]$, and

$$
(A P H S) \int_{a}^{\infty} F_{\lambda}^{-}(x) d \alpha=K_{\lambda}^{-}, \quad(A P H S) \int_{a}^{\infty} F_{\lambda}^{+}(x) d \alpha=K_{\lambda}^{+} .
$$

(2) implies (1) : Since $F_{\lambda}^{-}(x)$ and $F_{\lambda}^{+}(x)$ are AP-Henstock-Stieltjes integrable functions with respect to α on $[a, \infty]$ for any $\lambda \in[0,1]$, for $\epsilon>0$, there exists a choice S on $[a, \infty]$ and $T \in R^{+}$such that for any S-fine partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], x i_{i}\right): 1 \leq i \leq n\right\}$ on $[a, b]$ of a finite interval $[a, b] \supset[a, \infty] \cap[-T, T]$ and for any $\lambda \in[0,1]$, we have

$$
\begin{aligned}
& \left|\sum_{i=1}^{n} F_{\lambda}^{-}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)-K_{\lambda}^{-}\right|<\epsilon, \\
& \left|\sum_{i=1}^{n} F_{\lambda}^{+}\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)-K_{\lambda}^{+}\right|<\epsilon
\end{aligned}
$$

Then we can prove that $\left\{\left[K_{\lambda}^{-}, K_{\lambda}^{+}\right]: \lambda \in[0,1]\right\}$ satisfies the conditions of Lemma 1.1. By the Lemma 1.1, $\left\{\left[K_{\lambda}^{-}, K_{\lambda}^{+}\right]: \lambda \in[0,1]\right\}$ determines a fuzzy number K. By the definition of D, for any S-fine partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], \xi_{i}\right): 1 \leq i \leq n\right\}$ on $[a, b]$, we obtain

$$
D\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right), K\right)<2 \epsilon
$$

Thus, $(F, \alpha) \in A P F H S[a, \infty]$ and $(A P F H S) \int_{a}^{\infty} F(x) d \alpha=K$.
From theorem 2.6, the following theorem is obvious.
Theorem 2.7. Let $F, G \in A P F H S[a, \infty]$ and $\beta, \gamma \in R$. Then $\beta F+$ $\gamma G \in \in A P F H S[a, \infty]$ and
$(A P F H S) \int_{a}^{\infty}(\beta F+\gamma G) d \alpha=\beta(A P F H S) \int_{a}^{\infty} F d \alpha+\gamma(A P F H S) \int_{a}^{\infty} G d \alpha$.
Theorem 2.8. Let $F, G \in A P F H S[a, \infty]$ and $D(F, G)$ is LebesgueStieltjes integrable on $[a, \infty]$. Then
$D\left((A P F H S) \int_{a}^{\infty} F d \alpha,(A P F H S) \int_{a}^{\infty} G d \alpha\right) \leq(L) \int_{a}^{\infty} D(F, G) d \alpha$.
Proof. By definition of distance,

$$
\begin{aligned}
& D\left((A P F H S) \int_{a}^{\infty} F d \alpha,(A P F H S) \int_{a}^{\infty} G d \alpha\right) \\
& =\sup _{\lambda \in[0,1]} \max \left(\left|\left[\left((A P H S) \int_{a}^{\infty} F d \alpha\right)\right]_{\lambda}^{-}-\left[\left((A P H S) \int_{a}^{\infty} G d \alpha\right)\right]_{\lambda}^{-}\right|\right. \\
& \left.\qquad\left|\left[\left((A P H S) \int_{a}^{\infty} F d \alpha\right)\right]_{\lambda}^{+}-\left[\left((A P H S) \int_{a}^{\infty} G d \alpha\right)\right]_{\lambda}^{+}\right|\right) \\
& =\sup _{\lambda \in[0,1]} \max \left(\left|(A P H S) \int_{a}^{\infty}\left([F]_{\lambda}^{-}-[G]_{\lambda}^{-}\right) d \alpha\right|\right. \\
& \left.\left|(A P H S) \int_{a}^{\infty}\left([F]_{\lambda}^{+}-[G]_{\lambda}^{+}\right) d \alpha\right|\right) \\
& \leq \sup _{\lambda \in[0,1]} \max \left((L) \int_{a}^{\infty}\left|[F]_{\lambda}^{-}-[G]_{\lambda}^{-}\right| d \alpha,(L) \int_{a}^{\infty}\left|[F]_{\lambda}^{+}-[G]_{\lambda}^{+}\right| d \alpha\right) \\
& \leq(L S) \int_{a}^{\infty} D(F, G) d \alpha .
\end{aligned}
$$

References

[1] A. Boccto, B. Riecan, On the Henstock-Kurzweil for Riesz-space-valued functions defined on unbounded intervals, Czechoslovak Math. J. 54 (2004), no. 3, 591-607.
[2] Ke-feng Duan, The Henstock-Stieltjes integral for fuzzy number-valued functions on a infinite interval, J. Computational Analysis and Applications, 20 (2016), 928-938.
[3] K. S. Eun, J. H. Yoon, J. M. Park, and D. H. Lee, On Henstock integrals of interval-valued functions, Journal of the Chungcheoug Math. Soc. 25 (2012), 291-287.
[4] Z. Gong and L. wang, On Henstock-Stieltjes integral for fuzzy number-valued functions, Information Siences, 188 (2012), 276-297.
[5] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Studia Math. 92, 1994.
[6] P. Y. Lee, Lanzhou Lectures in Henstock Integration, World Scientific, 1989.
[7] P. Y. Lee and R. Vyborny, The integral:An easy approach after Kurzweil and Henstock, Cambridge Univ. Press, 2000.
[8] Ju Han Yoon, The AP-Henstock-Stieltjes integral for fuzzy number-valued functions, Journal of the Chungcheoug Math. Soc. 31 (2018), no. 1, 151-160.
[9] Ju Han Yoon, On convergence theorems of the AP-Henstock-Stieltjes integral for fuzzy number-valued functions, Journal of the Chungcheoug Math. Soc. 31 (2018), no. 3, 333-341.
[10] Congxin Wu and Zengtai Gong, On Henstock integrals of interval-valued functions and fuzzy-valued functions, Fuzzy Sets and Systems, 115 (2000), 377-392.
[11] Congxin Wu and Zengtai Gong, On Henstock integrals of fuzzy number-valued functions(I), Fuzzy Sets and Systems, 120 (2001), 523-532.

*

Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: eungs@cbnu.ac.kr
**
Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: yoonjh@cbnu.ac.kr

[^0]: Received January 14, 2019; Accepted February 01, 2019.
 2010 Mathematics Subject Classification: Primary 12A34, 56B34; Secondary 78C34.

 Key words and phrases: Fuzzy number, AP-Henstock-Stieltjes Integral .
 ** The corresponding author.

