• 제목/요약/키워드: Fused deposition modeling(FDM)

검색결과 94건 처리시간 0.02초

3D 프린팅을 이용한 마이크로니들 제작의 최신 연구 동향 (Recent Research Trend in Microneedle Fabrication Using 3D Printing)

  • 추상민;정재환
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.379-384
    • /
    • 2021
  • 마이크로니들은 약물전달 및 진단에 사용되는 미세바늘로 일반 주사와 달리 길이가 짧아 효과적으로 약물을 전달하는 한편 고통과 감염위험은 최소화시킬 수 있는 도구이다. 기존의 마이크로니들은 MEMS 기술을 기반으로 정밀하게 나노미터 수준으로 제작되었으나 장비와 유지비가 비싸고 공정이 복잡하여, 최근에는 3D 프린팅을 이용해 경제적이고 간단하며 신속하게 마이크로니들을 제작하는 연구가 진행 중이다. 3D 프린팅 기술은 프로토타입의 제작이 간단하고 수정 보완이 용이하기 때문에 마이크로니들 의약품 및 화장품의 상용화에 유리하다. 이에 본 총설은 SLA, 2PP, DLP, CLIP, FDM 3D 프린팅 기술에 대해 소개하고, 이를 이용한 마이크로니들 제작 연구동향에 대해 소개하고자 한다. 또한 현재 마이크로니들 기술의 한계점과 앞으로 해결해야 할 부분에 대해서 논해보고자 한다.

광조형물의 패턴두께에 따른 표면 거칠기 저감을 위한 공정연구 (A Study on the reduction of surface roughness by analyzing the thickness of photocurable sculpture)

  • 김영수;양형찬;김고범;당현우;도양회;최경현
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.75-82
    • /
    • 2016
  • In this paper, we developed a 3D printing system using a photo-curing resin in order to reduce the surface roughness of a sculpture produced with the 3D printer. Using the pattern of the resulting variable thickness, that gave rise to a stepped shape, and the area error of the photo-curable sculpture, a study was carried out for the process to reduce the surface roughness. At a given value of stage velocity (40~70 mm/s) and output air pneumatic pressure (20~60 kPa), the minimum pattern thickness of the pattern was achieved $65{\mu}m$ and the maximum pattern thickness of up to $175{\mu}m$. To increases the pattern resolution to about $40{\mu}m$, the process conditions should be optimized. 3D surface Nano profiler was used to find the surface roughness of the sculpture that was measured to be minimum $4.7{\mu}m$ and maximum $8.7{\mu}m$. The maximum surface roughness was reduced about $1.2{\mu}m$ for the maximum thickness of the pattern. In addition, a FDM was used to fabricate the same sculpture and its surface roughness measurements were also taken for comparison with the one fabricated using photo-curing. Same process conditions were used for both fabrication setups in order to perform the comparison efficiently. The surface roughness of the photo-curable sculpture is $5.5{\mu}m$ lower than the sculpture fabricated using FDM. A certain circuit patterns was formed on the laminated surface of the photo-curable sculpture while there was no stable pattern on the laminated surface of the FDM based sculpture the other hand.

미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교 (Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems)

  • 배서준;임도진
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.706-713
    • /
    • 2019
  • 본 연구에서는 미세유체 시스템 제작에 적합한 3D 프린팅 방식 및 소재 별 표면특성 분석을 통해 각 응용 사례에 적합한 프린터 및 소재 선정에 가이드라인을 줄 수 있는 기초 연구를 수행하였다. 가장 보편적으로 사용되는 적층 방식과 해상도가 상대적으로 높은 광경화 방식에 대해 프린팅 방식과 소재에 따른 표면 특성을 살펴보았다. 적층 방식의 프린트물은 소재에 무관하게 후처리 전에는 친수성 특성을 보이나 아세톤 증기에 의한 후처리 후에는 소수성 특성을 보임을 확인할 수 있었다. SEM을 이용한 표면 조도 관찰을 통해 이러한 접촉각의 변화가 후처리에 의한 표면의 결 구조의 제거에 기인한 것임을 확인하였다. 광경화식 프린트물은 적층식 대비 친수성의 특성을 보였으나 소수성 코팅을 이용해 표면 개질이 가능함을 실험적으로 확인하였다. 두 프린팅 방식 중 투명한 재질이 요구되는 경우, 적층 방식은 투명한 시편을 만드는 것이 불가능함을 확인하였으며 광경화 방식의 경우 충분한 투명도가 확보됨을 확인하였다. 액적 접촉충전 현상에 기반한 디지털 전기천공 시스템의 electroporation chip을 광경화 방식으로 제작하였으며 성공적으로 전기천공을 시연함으로써 미세유체 시스템에 직접 적용이 가능함 또한 확인하였다.

영상해부학 교육을 위한 3차원 인체 모사 조형물 제작 사례 연구 (A Case Study of Three Dimensional Human Mimic Phantom Production for Imaging Anatomy Education)

  • 성열훈
    • 한국방사선학회논문지
    • /
    • 제12권1호
    • /
    • pp.71-78
    • /
    • 2018
  • 본 연구에서는 인체 모사 조형물을 3차원 프린팅으로 출력한 사례를 보고하고자 하였다. 재료는 용융적층방식의 개인용 3차원 프린터 장비와 폴리락트산을 소재로 사용하였다. 3차원 인체 모사 조형물 출력은 모델링하는 단계, 평면화 작업과 G-code 변환 단계,출력변수 설정 단계, 3D 출력단계, 마지막으로 후처리 단계 순으로 진행하였으며, 학생들의 학습만족도(해부학인지도, 수업흥미도)를 리커트 5 점 척도로 조사하였다. 그 결과, 총 20가지의 3차원 인체 모사 조형물을 성공적으로 출력하였다. 총 출력소요시간은 11,691분(194시간 85분)이었으며 평균 출력소요시간은 584.55분(9시간 7분)이었다. 이에 소요된 필라멘트량은 총 2,390.2 g 이었으며 평균 119.51 g 이 소요되었다. 학습만족도의 해부학인지도는 평균 4.6 점, 수업흥미도는 평균 4.5 점으로 높은 것으로 나타났다. 앞으로 3차원 프린팅 기술은 영상해부학 교육의 학습효과를 높여줄 수 있으리라 기대한다.

Feasibility of Fabricating Variable Density Phantoms Using 3D Printing for Quality Assurance (QA) in Radiotherapy

  • Oh, Se An;Kim, Min Jeong;Kang, Ji Su;Hwang, Hyeon Seok;Kim, Young Jin;Kim, Seong Hoon;Park, Jae Won;Yea, Ji Woon;Kim, Sung Kyu
    • 한국의학물리학회지:의학물리
    • /
    • 제28권3호
    • /
    • pp.106-110
    • /
    • 2017
  • The variable density phantom fabricated with varying the infill values of 3D printer to provide more accurate dose verification of radiation treatments. A total of 20 samples of rectangular shape were fabricated by using the $Finebot^{TM}$ (AnyWorks; Korea) Z420 model ($width{\times}length{\times}height=50mm{\times}50mm{\times}10mm$) varying the infill value from 5% to 100%. The samples were scanned with 1-mm thickness using a Philips Big Bore Brilliance CT Scanner (Philips Medical, Eindhoven, Netherlands). The average Hounsfield Unit (HU) measured by the region of interest (ROI) on the transversal CT images. The average HU and the infill values of the 3D printer measured through the 2D area profile measurement method exhibited a strong linear relationship (adjusted R-square=0.99563) in which the average HU changed from -926.8 to 36.7, while the infill values varied from 5% to 100%. This study showed the feasibility fabricating variable density phantoms using the 3D printer with FDM (Fused Deposition Modeling)-type and PLA (Poly Lactic Acid) materials.

자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가 (The Usability Assessment of Self-developed Phantom for Evaluating Automatic Exposure Control System Using Three-Dimensions Printing)

  • 이기백;남기창;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권4호
    • /
    • pp.147-153
    • /
    • 2020
  • This study was to evaluate the usability of self-developed phantom for evaluating automatic exposure control (AEC) using three-dimensions (3D) printer. 3D printer of fused deposition modeling (FDM) type was utilized to make the self-developed AEC phantom and image acquisitions were conducted by two different type of scanners. The self-developed AEC phantom consisted of four different size of portions. As a result, two types of phantom (pyramid and pentagon shape) were created according to the combination of the layers. For evaluating the radiation dose with the two types of phantom, the values of tube current, computed tomography dose index volume (CTDIvol), and dose length product (DLP) were compared. As a result, it was confirmed that the values of tube current were properly reflected according to the thickness, and the CTDIvol and DLP were not significantly changed regardless of AEC functions of different scanners. In conclusion, the self-developed phantom by using 3D printer could assess whether the AEC function works well. So, we confirmed the possibility that a self-made phantom could replace the commercially expensive AEC performance evaluation phantom.

개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구 (Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products)

  • 유찬주;김혜수;박준한;윤단희;신종국;신보성
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.

3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정 (Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure)

  • 박지훈;전혜준;박경호;윤충식
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

3D 프린팅 Auxetic Re-entrant 패턴의 기울기 각도에 따른 네오프렌 복합 직물의 역학적 특성에 관한 연구 (Mechanical Properties of 3D Printed Re-entrant Pattern/Neoprene Composite Textile by Pattern Tilting Angle of Pattern)

  • 김혜림;카비르 샤흐바지;이선희
    • 한국의류학회지
    • /
    • 제45권1호
    • /
    • pp.106-122
    • /
    • 2021
  • This study confirmed the mechanical properties of an auxetic re-entrant pattern prepared using 3D printing technology and its composite fabric with neoprene for the production of functional auxetic patterns/textiles for safety shoes. Samples were prepared by the tilt angle of a re-entrant pattern of 0°, 30°, 45°, 60° and 90°, and then analyzed using Poisson's ratio, bending, compression, and tensile properties. A 3D printed auxetic re-entrant pattern (3DP-RE) and its composite fabric (3DP-RE/NP) showed a negative Poisson's ratio in all tilting angles that indicated auxetic properties. The results of the bending property shown that strength of 3DP-RE/NP was 1.5 times lower than NP, but the strain improved 2.0 times. It was confirmed that the deformation of 3DP-RE/NP is possible with a low load. Each sample type of compression behavior indicated similar regardless of the tilting angles; in addition, the compression toughness of 3DP-RE/NP increased 1.2 times compared with NP. In the case of tensile properties, 3DP-RE and 3DP-RE/NP were affected by the tilting angle, samples with 90° (the opposite of load direction) showed best tensile property and toughness. 3DP-RE/NP indicated improved bending, compression, and tensile properties.

3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로 (A review of 3D printing technology for piezoresistive strain/loadcell sensors)

  • 조정훈;문현우;김성용;최백규;오광원;정관영;강인필
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.