Browse > Article
http://dx.doi.org/10.5850/JKSCT.2021.45.1.106

Mechanical Properties of 3D Printed Re-entrant Pattern/Neoprene Composite Textile by Pattern Tilting Angle of Pattern  

Kim, Hyelim (Research Institute of Convergence Design, Dong-A University)
Kabir, Shahbaj (Dept. Fashion & Textiles, Dong-A University)
Lee, Sunhee (Dept. of Fashion Design, Dong-A University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.45, no.1, 2021 , pp. 106-122 More about this Journal
Abstract
This study confirmed the mechanical properties of an auxetic re-entrant pattern prepared using 3D printing technology and its composite fabric with neoprene for the production of functional auxetic patterns/textiles for safety shoes. Samples were prepared by the tilt angle of a re-entrant pattern of 0°, 30°, 45°, 60° and 90°, and then analyzed using Poisson's ratio, bending, compression, and tensile properties. A 3D printed auxetic re-entrant pattern (3DP-RE) and its composite fabric (3DP-RE/NP) showed a negative Poisson's ratio in all tilting angles that indicated auxetic properties. The results of the bending property shown that strength of 3DP-RE/NP was 1.5 times lower than NP, but the strain improved 2.0 times. It was confirmed that the deformation of 3DP-RE/NP is possible with a low load. Each sample type of compression behavior indicated similar regardless of the tilting angles; in addition, the compression toughness of 3DP-RE/NP increased 1.2 times compared with NP. In the case of tensile properties, 3DP-RE and 3DP-RE/NP were affected by the tilting angle, samples with 90° (the opposite of load direction) showed best tensile property and toughness. 3DP-RE/NP indicated improved bending, compression, and tensile properties.
Keywords
Fused deposition modeling 3D printing; Auxetic re-entrant pattern; Neoprene; Tilting angle; Mechanical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Piedade, S. R., Imhoff, A. B., Clatworthy, M., Cohen, M., & Espregueira-Mendes, J. (Eds.). (2019). The sports medicine physician. Cham: Springer.
2 Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures: a review. Smart Materials and Structures, 27(2):023001. doi:10.1088/1361-665X/aaa61c   DOI
3 Soltani, A., Noroozi, R., Bodaghi, M., Zolfagharian, A., & Hedayati, R. (2020). 3D printing on-water sports boards with bio-inspired core designs. Polymers, 12(1):250. doi:10.3390/polym12010250.   DOI
4 Somireddy, M., & Czekanski, A. (2020). Anisotropic material behavior of 3D printed composite structures - Material extrusion additive manufacturing. Materials & Design, 195:108953. doi:10.1016/j.matdes.2020.108953   DOI
5 Water shoe. (2020, December 2). Wikipedia, Retrieved from https://en.wikipedia.org/wiki/Water_shoe
6 Williams, J. T. (Ed.). (2018). Waterproof and water repellent textiles and clothing. Duxford: Woodhead Publishing.
7 Xue, Y., Gao, P., Zhou, L., & Han, F. (2020). An enhanced three-dimensional auxetic lattice structure with improved property. Materials, 13(4):1008. doi:10.3390/ma13041008   DOI
8 Zhao, S., Hu, H., Kamrul, H., Chang, Y., & Zhang, M. (2020). Development of auxetic warp knitted fabrics based on reentrant geometry. Textile Research Journal, 90(3-4), 344-356. doi:10.1177/0040517519866931   DOI
9 Jawaid, M., Thariq, M., & Saba, N. (Eds.). (2019). Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Duxford: Woodhead Publishing.
10 Kabir, S., Kim, H., & Lee, S. (2020a). Characterization of 3D printed auxetic sinusoidal patterns/nylon composite fabrics. Fibers and Polymers, 21(6), 1372-1381. doi:10.1007/s12221-020-9507-6   DOI
11 Kabir, S., Kim, H., & Lee, S. (2020b). Physical property of 3D-printed sinusoidal pattern using shape memory TPU filament. Textile Research Journal, 90(21-22), 2399-2410. doi:10.1177/0040517520919750   DOI
12 Kamrul, H., Zulifqar, A., & Hu, H. (2020). Deformation behavior of auxetic woven fabric based on re-entrant hexagonal geometry in different tensile directions. Textile Research Journal, 90(3-4), 410-421. doi:10.1177/0040517519869391   DOI
13 Kelkar, P. U., Kim, H. S., Cho, K.-H., Kwak, J. Y., Kang, C.-Y., & Song H.-C. (2020). Cellular auxetic structures for mechanical meta-materials: A review. Sensors, 20(11):3132. doi:10.3390/s20113132   DOI
14 Kim, H., & Lee, S. (2020). Mechanical properties of 3D printed re-entrant pattern with various hardness types of TPU filament manufactured through FDM 3D printing. Textile Science and Engineering, 57(3), 166-176. doi:10.12772/TSE.2020.57.166   DOI
15 Kim, J.-S., Lee, D.-J., Kim, I. J., & Ko, J. W. (2019). 신발 제조시스템의 최신 동향 [The latest trends in shoe manufacturing systems]. Fiber Technology and Industry, 23(3), 255-264.
16 Kolken, H. M. A., & Zadpoor, A. A. (2017). Auxetic mechanical metamaterials. RSC Advances, 7(9), 5111-5129. doi:10.1039/C6RA27333E   DOI
17 Korean Agency for Technology and Standards. (2017b, December 27). KS M ISO17706 Footwear - Test methods for uppers Tensile strength and elongation. Korean Standards & Certifications. Retrieved from https://www.e-ks.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO17706&tmprKsNo=KSMISO17706&reformNo=03
18 Korean Agency for Technology and Standards. (2018, December 14). KS M ISO604 Plastics - Determination of compressive properties. Korean Standards & Certifications. Retrieved from https://www.e-ks.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO604&tmprKsNo=KSMISO604&reformNo=03
19 AlMaadeed, M. A. A., Ponnamma, D., & Carignano, M. A. (Eds.). (2020). Polymer science and innovative applications: Materials, techniques, and future developments. Amsterdam: Elsevier.
20 Gu, L., Xu, Q., & Du, Z. (2021). Analysis of tensile behavior of hyperelastic auxetic cellular materials with re-entrant hexagonal cells. The Journal of The Textile Institute, 112(2), 173-186. doi:10.1080/00405000.2020.1729055   DOI
21 Li, T., Liu, F., & Wang, L. (2020). Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B: Engineering, 198:108229. doi:10.1016/j.compositesb.2020.108229   DOI
22 Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052-1063. doi:10.5897/SRE.9000104   DOI
23 Korean Agency for Technology and Standards. (2017a, December 1). KS M ISO14125 Fibre-reinforced plastic composites - Determination of flexural properties. Korean Standards & Certifications. Retrieved from https://www.e-ks.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO14125&tmprKsNo=KSMISO14125&reformNo=03