Acknowledgement
본 연구는 단국대학교 제약공학과 소속 저자의 결과물로서 해당 학과는 2020년도 단국대학교 대학혁신지원사업 연구중심학과 육성사업지원을 받았음.
References
- Y. Kim, J. Park, and M. R. Prausnitz, Microneedles for drug and vaccine delivery, Adv. Drug Deliv. Rev., 64, 1547-1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
- H. S. Gill, J. Soderholm, M. R. Prausnitz, and M Sallberg., Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther., 17, 811-814 (2010). https://doi.org/10.1038/gt.2010.22
- P. M. Wang, M. Cornwell, J. Hill, and M. R. Prausnitz, Precise Microinjection into Skin Using Hollow Microneedles, J. Invest. Dermatol., 126, 1080-1087 (2006). https://doi.org/10.1038/sj.jid.5700150
- J. Jung, and S. Jin, Microneedle for transdermal drug delivery: current trends and fabrication., Int. J. Pharm. Investig., 1-15 (2021).
- J. Lee, and M. R. Praunistz, Drug delivery using microneedle patches: not just for skin, Expert Opin. Drug Deliv., 15, 541-543 (2018). https://doi.org/10.1080/17425247.2018.1471059
- M. R. Praunistz, Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin, Annu. Rev. Chem. Biomol. Eng., 8, 177-200 (2017). https://doi.org/10.1146/annurev-chembioeng-060816-101514
- N. Roxhed, P. Griss, and G. Stemme, A method for tapered deep reactive ion etching using a modified Bosch process, J. Micromech. Microeng., 17, 1087 (2007). https://doi.org/10.1088/0960-1317/17/5/031
- S. N. Economidou, and D. Douroumis, 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential., Adv. Drug Deliv. Rev., 173, 60-69 (2021). https://doi.org/10.1016/j.addr.2021.03.007
- E. Larraneta, R. E. M. Lutton, A. D. Woolfson, and R. F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems : Materials science, manufacture and commercial development, Mater. Sci. Eng. R Rep., 104, 1-32 (2016). https://doi.org/10.1016/j.mser.2016.03.001
- J. Halder, S. Gupta, R. Kumari, G. Das Gupta, and V. K. Rai, Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery, J. Pharm. Innov., 1-8 (2020)
- S. N. Economidou, D. A. Lamprou, and D. Douroumis, 3D printing applications for transdermal drug delivery, Int. J. Pharm., 544, 415-424 (2018). https://doi.org/10.1016/j.ijpharm.2018.01.031
- E. A. Allen, C. O'Mahony, M. Cronin, T. O'Mahony, A. C. Moore, and A. M. Crean, Dissolvable microneedle fabrication using piezoelectric dispensing technology, Int. J. Pharm., 500, 1-10 (2016). https://doi.org/10.1016/j.ijpharm.2015.12.052
- C. Liaw, M. Guvendiren, Current and emerging applications of 3D printing in medicine, Biofabrication, 9, 024102 (2017). https://doi.org/10.1088/1758-5090/aa7279
- R. K. Chen, Y. an Jin, J. Wensman, and A. Shih, Additive manufacturing of custom orthoses and prostheses-A review, Addit. Manuf., 12, 77-89 (2016).
- D. Nesic, S. Durual, L. Marger, M. Mekki, I. Sailer, and S. S. Scherrer, Could 3D printing be the future for oral soft tissue regeneration?, Bioprinting, 20, e00100 (2020). https://doi.org/10.1016/j.bprint.2020.e00100
- D. Han, R. S. Morde, S. Mariani, A. A. La Mattina, E. Vignali, C. Yang, G. Barillaro, and H. Lee, 4D Printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater., 30, 1909197 (2020) https://doi.org/10.1002/adfm.201909197
- Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu, L. Liang, Z. Wang, and L. Jiang, Additive Manufacturing of Honeybee-Inspired Microneedle for Easy Skin Insertion and Difficult Removal, ACS Appl. Mater. Interfaces., 10, 29338-29346 (2018). https://doi.org/10.1021/acsami.8b09563
- M. Ogundele, and H. K. Okafor, Transdermal drug delivery: Microneedles, their fabrication and current trends in delivery methods, J. Pharm. Res. Int., 18, 1-14 (2017).
- C. Schmidleithner, and D. M. Kalaskar, Stereolithography, In: D. Cvetkovic, 3D Printing, 1-22, IntechOpen, London, UK (2018)
- M. A. Luzuriaga, D. R. Berry, J. C. Reagan, R. A. Smaldone, and J. J. Gassensmith, Biodegradable 3D printed polymer microneedles for transdermal drug delivery, Lab Chip, 18, 1223-1230 (2018). https://doi.org/10.1039/C8LC00098K
- M. Wu, Y. Zhang, H. Huang, J. Li, H. Liu, Z. Guo, L. Xue, S. Liu, and Y. Lei, Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes, Mater. Sci. Eng. C, 117, 111299 (2020). https://doi.org/10.1016/j.msec.2020.111299
- N. Elahpour, F. Pahlevanzadeh, M. Kharaziha, H. R. BakhsheshiRad, S. RamaKrishna, and F. Berto, 3D printed microneedles for transdermal drug delivery: A brief review of two decades. Int. J. Pharm., 597, 120301 (2021). https://doi.org/10.1016/j.ijpharm.2021.120301
- K. J. Krieger, N. Bertollo, M. Dangol, J. T. Sheridan, M. M. Lowery, and E. D. O'Cearbhaill, Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng., 5, 1-14 (2019). https://doi.org/10.1038/s41378-018-0040-3
- M. A. Lopez-Ramirez, F. Soto, C. Wang, R. Rueda, S. Shukla, C. Silva-Lopez, D. Kupor, D. A. McBride, J. K. Pokorski, A. Nourhani, N. F. Steinmetz, N. J. Shah, and J. Wang, Built-In Active Microneedle Patch with Enhanced Autonomous Drug Delivery, Adv. Mater., 32, 1905740 (2019). https://doi.org/10.1002/adma.201905740
- R. I. Amer, G. H. El-Osaily, R. O. Bakr, R. S. El Dine, and A. M. Fayez, Characterization and Pharmacological Evaluation of Anti-Cellulite Herbal Product(s) Encapsulated in 3D-Fabricated Polymeric Microneedles, Sci. Rep., 10, 1-16 (2020). https://doi.org/10.1038/s41598-019-56847-4
- C. P. P. Pere, S. N. Economidou, G. Lall, C. Ziraud, J. S. Boateng, B. D. Alexander, D. A. Lamprou, and D. Douroumis, 3D printed microneedles for insulin skin delivery, Int. J. Pharm., 544, 425-432 (2018). https://doi.org/10.1016/j.ijpharm.2018.03.031
- S. N. Economidou, C. P. P. Pere, A. Reid, M. J. Uddin, J. F. Windmill, D. A. Lamprou, and D. Douroumis, 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery, Mater. Sci. Eng. C, 102, 743-755 (2019). https://doi.org/10.1016/j.msec.2019.04.063
- C. Yeung, S. Chen, B. King, H. Lin, K. King, F. Akhtar, G. Diaz, B. Wang, J. Zhu, W. Sun, A. Khademhosseini, and S. Emaminejad, A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery, Biomicrofluidics, 13, 064125 (2019). https://doi.org/10.1063/1.5127778
- S. N. Economidou, M. J. Uddin, M. J. Marques, D. Douroumis, W. T. Sow, H. Li, A. Reid, J. F. C. Windmill, and A. Podoleanu, A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery, Addit. Manuf., 38, 101815 (2021).
- K. Takada, H. Sun, and S. Kawata, Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting, Appl. Phys. Lett., 86, 071122 (2005). https://doi.org/10.1063/1.1864249
- S. C. Balmert, C. D. Carey, G. D. Falo, S. K. Sethi, G. Erdos, E. Korkmaz, and L. D. Falo Jr, Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination, J. Control. Release, 317, 336-346 (2020). https://doi.org/10.1016/j.jconrel.2019.11.023
- Z. F. Rad, R. E. Nordon, C. J. Anthony, L. Bilston, P. D. Prewett, J. Arns, C. H. Arns, L. Zhang, and G. J. Davies, High-fidelity replication of thermoplastic microneedles with open microfluidic channels, Microsyst. Nanoeng., 3, 1-11 (2017).
- A. S. Cordeiro, I. A. Tekko, M. H. Jomaa, L. Vora, E. McAlister, F. Volpe-Zanutto, M. Nethery, P. T. Baine, N. Mitchell, D. W. McNeill, and R. F. Donnelly, Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems, Pharm. Res., 37, 1-15 (2020). https://doi.org/10.1007/s11095-019-2719-z
- C. Plamadeala, S. R. Gosain, F. Hischen, B. Buchroithner, S. Puthukodan, J. Jacak, A. Bocchino, D. Whelan, C. O'Mahony, W. Baumgartner, and J. Heitz, Bio-inspired microneedle design for efficient drug/vaccine coating, Biomed. Microdevices, 22, 1-9, (2020). https://doi.org/10.1007/s10544-019-0454-1
- A. R. Johnson, and A. T. Procopio, Low cost additive manufacturing of microneedle masters, 3D Print. Med., 5, 1-10 (2019). https://doi.org/10.1186/s41205-019-0038-y
- N. El-Sayed, L. Vaut, and M. Schneider, Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery, Eur. J. Pharm. Biopharm., 154, 166-174 (2020). https://doi.org/10.1016/j.ejpb.2020.07.005
- A. Kundu, P. Arnett, A. Bagde, N. Azim, E. Kouagou, M. Singh, and S. Rajaraman, DLP 3D Printed "Intelligent" Microneedle Array (iµNA) for Stimuli Responsive Release of Drugs and Its in Vitro and ex Vivo Characterization, J. Microelectromech. Syst., 29, 685- 691 (2020). https://doi.org/10.1109/JMEMS.2020.3003628
- W. Yao, D. Li, Y. Zhao, Z. Zhan, G. Jin, H. Liang, and R. Yang, 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing, Micromachines, 11, 17 (2020).
- J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Prinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. Desimone, Continuous liquid interface production of 3D objects, Science, 347, 1349-1352 (2015). https://doi.org/10.1126/science.aaa2397
- A. R. Johnson, C. L. Caudill, J. R. Tumbleston, C. J. Bloomquist, K. A. Moga, A. Ermoshkin, D. Shirvanyants, S. J. Mecham, J. C. Luff, and J. M. DeSimone, Single-step fabrication of computationally designed microneedles by continuous liquid interface production, PLoS One, 11, e0162518 (2016). https://doi.org/10.1371/journal.pone.0162518
- C. L. Caudill, J. L. Perry, S. Tian, J. C. Luft, J. M. DeSimone, Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery, J. Control. Release, 284, 122-132 (2018). https://doi.org/10.1016/j.jconrel.2018.05.042
- C. J. Bloomquist, M. B. Mecham, M. D. Paradzinsky, R. Janusziewicz, S. B. Warner, J. C. Luft, S, J. Mecham, A. Z. Wang, and J. M. DeSimone, Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins, J. Control. Release, 278, 9-23 (2018). https://doi.org/10.1016/j.jconrel.2018.03.026
- E. George, P. Liacouras, F. J. Rybicki, and D. Mitsouras, Measuring and establishing the accuracy and reproducibility of 3D printed medical models, Radiographics, 37, 1424-1450 (2017). https://doi.org/10.1148/rg.2017160165
- R. Ali, P. Mehta, M. S. Arshad, I. Kucuk, M. W. Chang, and Z. Ahmad, Transdermal microneedles-a materials perspective, AAPS Pharmscitech, 21, 1-14 (2020). https://doi.org/10.1208/s12249-019-1542-5