• Title/Summary/Keyword: Functional applications

Search Result 1,422, Processing Time 0.048 seconds

STABILITY IN FUNCTIONAL DIFFERENCE EQUATIONS WITH APPLICATIONS TO INFINITE DELAY VOLTERRA DIFFERENCE EQUATIONS

  • Raffoul, Youssef N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1921-1930
    • /
    • 2018
  • We consider a functional difference equation and use fixed point theory to obtain necessary and sufficient conditions for the asymptotic stability of its zero solution. At the end of the paper we apply our results to nonlinear Volterra infinite delay difference equations.

THE STABILITY OF K-EXPONENTIAL EQUATIONS

  • Lee, Young-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.929-935
    • /
    • 1999
  • By applications of the stability for a class of functional equa-tions we obtain the hyers-Ulam stability for the equations of the form g($\chi$+y)=kg($\chi$)g(y) in the following setting; |g($\chi$+y)-kg($\chi$)g(y)|$\leq$$\Delta$($\chi$,y).

EXISTENCE OF PERIODIC SOLUTIONS IN FERROELECTRIC LIQUID CRYSTALS

  • Park, Jinhae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.571-588
    • /
    • 2010
  • We introduce the Landau-de Gennes model in order to understand molecular structures in ferroelectric liquid crystals. We investigate equilibrium configurations of the governing energy functional by means of bifurcation analysis. In particular, we obtain periodic solutions of the functional, which is a signature of a rich variety of applications of ferroelectric materials.

Aptamers as Functional Nucleic Acids: in vitro Selection and Biotechnological Applications

  • You, Kyung-Man;Lee, Sang-Hyun;Aesul Im;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.64-75
    • /
    • 2003
  • Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids. nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer Selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.

Classification via principal differential analysis

  • Jang, Eunseong;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.135-150
    • /
    • 2021
  • We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.