Aptamers as Functional Nucleic Acids: in vitro Selection and Biotechnological Applications

  • You, Kyung-Man (Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Sang-Hyun (Division of Molecular and Life Sciences, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Aesul Im (Division of Molecular and Life Sciences, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Sun-Bok (Division of Molecular and Life Sciences, Department of Chemical Engineering, Pohang University of Science and Technology)
  • Published : 2003.04.01


Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids. nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer Selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.



  1. Nature v.344 Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA Robertson,D.L.;G.F.Joyce https://doi.org/10.1038/344467a0
  2. Nature v.346 In vitro selection of RNA molecules that bind specific ligands Ellington,A.D.;J.W.Szostak https://doi.org/10.1038/346818a0
  3. Science v.249 Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase Tuerk,C.;L.Gold https://doi.org/10.1126/science.2200121
  4. Clin. Chem. v.45 Aptamers: An emerging class of molecules that rival antibodies in diagnostics Jayasena,S.
  5. Nucleic Acids Res. v.24 RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity Geiger,A.;P.Burgstaller;H.von der Eltz;A.Roeder;M.Famulok https://doi.org/10.1093/nar/24.6.1029
  6. Proc. Natl. Acad. Sci. USA v.94 In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules Haller,A.A.;P.Sarnow https://doi.org/10.1073/pnas.94.16.8521
  7. J. Inorg. Biochem. v.82 In vitro selection of aptamers that act with $Zn^{2+}$ Kawakami,J.;H.Imanaka;Y.Yokota;N.Sugimoto
  8. Biochemistry v.39 RNA aptamers to S-adenosylhomocysteine: kinetic properties, divalent cation dependency, and comparison with anti-S-adenosylhomocysteine antibody Gebhardt,K.;A.Shokraei;G.Babane;B.H.Lindquist https://doi.org/10.1021/bi000295t
  9. Proc. Natl. Acad. Sci. USA v.98 The use of mRNA display to select high-affinity proteinbinding peptides Wilson,D.S.;A.D.Keefe;J.W.Szostak https://doi.org/10.1073/pnas.061028198
  10. Nature Biotechnol. v.14 An enzyme-linked oligonucleotide assay Drolet,D.W.;L.Moon-McDermott;T.S.Romig https://doi.org/10.1038/nbt0896-1021
  11. Nuclic Acids Res. v.24 Use of a high affinity DNA ligand in flow cytometry Davis,K.A.;B.Abrams;Y.Lin;S.D.Jayasena https://doi.org/10.1093/nar/24.4.702
  12. Nucleic Acids Res. v.26 Staining of cell surface human CD4 with 2'-F-pyrimidine-containing RNA aptamers for flow cytometry Davis,K.A.;Y.Lin;B.Abrams;S.D.Jayasena https://doi.org/10.1093/nar/26.17.3915
  13. Anal. Chem. v.70 Adapting selected nucleic acid ligands(aptamers) to biosensors Radislav,R.A.;R.C.Conrad;A.D.Ellington;G.M.Hieftje https://doi.org/10.1021/ac9802325
  14. PrP. J. Virol. v.71 RNA aptamers specifically interact with the prion protein Weiss,S.;D.Proske;M.Neumann;M.H.Groschup;H.A.Kretzschmar;M.Famulok;E.L.Winnacker
  15. RNA v.5 In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus Klug,S.J.;A.Huttenhofer;M.Famulok https://doi.org/10.1017/S135583829999088X
  16. Clin. Invest. v.98 DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice Hicke,B.J.;S.R.Watson;A.Koenig;C.K.Lynott;R.F.Bargatze;Y.F.Chang;S.Ringquist;L.Moon-McDermott;S.Jennings;T.Fitzwater;H.L.Han;N.Varki;I.Albinana;M.C.Willis;A.Varki;D.Parma https://doi.org/10.1172/JCI119092
  17. J. Biol. Chem. v.273 RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase Bell,S.D.;J.M.Denu;J.E.Dixon;A.D.Ellington https://doi.org/10.1074/jbc.273.23.14309
  18. Biochemistry v.40 SELEX selection of high-affinity oligonucleotides for bacteriophage Ff gene 5 protein Wen,J.D.;C.W.Gray;D.M.Gray https://doi.org/10.1021/bi010109z
  19. Nucleic Acids Res. v.22 The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine Latham,J.A.;R.Johnson;J.J.Toole https://doi.org/10.1093/nar/22.14.2817
  20. Biochemistry v.36 In vitro selection of dopamine RNA ligands Mannironi,C.;A. Di Nardo;P.Fruscoloni;G.P.Tocchini-Valentini https://doi.org/10.1021/bi9700633
  21. J. Virol. v.73 Anti-Rex aptamers as mimics of the Rex-binding element Baskerville,S.;M.Zapp;A.D.Ellington
  22. J. Immunol. v.160 Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit $CD4^+$ T lymphocyte function Kraus,E.;W.James;A.N.Barclay
  23. FEBS Lett. v.441 RNA aptamers that specifically bind to the Ras-binding domain of Raf-1 Kimoto,M.;K.Sakamoto;M.Shirouzu;I.Hirao;S.Yokoyama https://doi.org/10.1016/S0014-5793(98)01572-5
  24. Nucleic Acids Res. v.24 RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity Geiger,A.;P.Burgstaller;H.von der Eltz;A.Roeder;M.Famulok https://doi.org/10.1093/nar/24.6.1029
  25. EMBO J. v.14 Identification of two novel arginine binding DNAs Harada,K.;A.D.Frankel
  26. Nat. Struct. Biol. v.1 An RNA pocket for an aliphatic hydrophobe Majerfeld,I.;M.Yarus https://doi.org/10.1038/nsb0594-287
  27. J. Am. Chem. Soc. v.14 Stereospecific recognition of tryptophan agarose by in vitro selected RNA Famulok,M.;J.W.Szostak
  28. EMBO J. v.18 tRNA prefers to kiss Scarabino,D.;A.Crisari;S.Lorenzini;K.Williams;G.P.Tocchini-Valentini https://doi.org/10.1093/emboj/18.16.4571
  29. RNA v.5 In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1 Duconge,F.;J.J.Toulme https://doi.org/10.1017/S1355838299991318
  30. Biotechnol. Prog. v.14 Automated RNA selection Cox,J.C.;P.Rudolph;A.D.Ellington https://doi.org/10.1021/bp980097h
  31. Science v.282 Controlling gene expression in living cells through small molecule-RNA interactions Werstuck,G.;M.R.Green https://doi.org/10.1126/science.282.5387.296
  32. J. Biol. Chem. v.273 Cleavage of highly structured viral RNA molecules by combinatorial libraries of hairpin ribozymes. The most effective ribozymes are not predicted by substrate selection rules Yu,Q.;D.B.Pecchia;S.L.Kingsley;J.E.Heckman;J.M.Burke https://doi.org/10.1074/jbc.273.36.23524
  33. Structure Fold Des. v.7 Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer Jiang,L.;A.Majumdar;W.Hu;T.J.Jaishree;W.Xu;D.J.Patel https://doi.org/10.1016/S0969-2126(99)80105-1
  34. RNA v.5 StreptoTag: a novel method for the isolation of RNA-binding proteins Bachler,M.;R.Schroeder;U.von Ahsen https://doi.org/10.1017/S1355838299991574
  35. Nat. Struct. Biol. v.5 Solution structure of the tobramycin-RNA aptamer complex Jiang,L.;D.J.Patel https://doi.org/10.1038/1804
  36. Bioorg. Med. Chem. v.9 A tetracycline-binding RNA aptamer Berens,C.;A.Thain;R.Schroeder https://doi.org/10.1016/S0968-0896(01)00063-3
  37. Chem. Biol. v.2 In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution Lato,S.M.;A.R.Boles;A.D.Ellington https://doi.org/10.1016/1074-5521(95)90048-9
  38. Biochemistry v.33 In vitro selection of RNA aptamers specific for cyanocobalamin Lorsch,J.R.;J.W.Szostak https://doi.org/10.1021/bi00170a016
  39. Biochemistry v.37 Functional requirements for specific ligand recognition by a biotinbinding RNA pseudoknot Wilson,C.;J.Nix;J.W.Szostak https://doi.org/10.1021/bi981371j
  40. Nature v.371 in vitro evolution of new ribozymes with polynucleotide kinase activity Lorsch,J.R.;J.W.Szostak https://doi.org/10.1038/371031a0
  41. Nucleic Acids Res. v.26 Allosteric regulation of a ribozyme activity through ligand-induced conformational change Araki,M.;Y.Okuno;Y.Hara;Y.Sugiura https://doi.org/10.1093/nar/26.14.3379
  42. Biochemistry v.37 A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA Zimmermann,G.R.;T.P.Shields;R.D.Jenison;C.L.Wick;A.Pardi https://doi.org/10.1021/bi980082s
  43. Nature v.355 Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures Ellington,A.D.;J.W.Szostak https://doi.org/10.1038/355850a0
  44. J. Mol. Biol. v.301 2.8 A crystal structure of the malachite green aptamer Baugh,C.;D.Grate;C.Wilson https://doi.org/10.1006/jmbi.2000.3951
  45. J. Mol. Biol. v.269 Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides Faulhammer,D.;M.Famulok https://doi.org/10.1006/jmbi.1997.1036
  46. J. Chromatogr. B: Biomed. Sci. Appl. v.731 Aptamer affinity chromatography: combinatorial chemistry applied to protein purification Romig,T.S.;C.Bell;D.W.Drolet https://doi.org/10.1016/S0378-4347(99)00243-1
  47. J. Immunol. v.157 High-affinity oligonucleotide ligands to human IgE inhibit binding to Fce receptor I Wiegand,T.W.;P.B.Williams;S.C.Dreskin;M.H.Jouvin;J.P.Kinet;D.Tasset
  48. Proc. Natl. Acad. Sci. USA v.96 Design of highly specific cytotoxins by using transsplicing ribozymes Ayre,B.G.;U.Kohler;H.M.Goodman;J.Haseloff https://doi.org/10.1073/pnas.96.7.3507
  49. Mol. Ther. v.2 Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accesible sites on a target RNA Lan,N.;B.L.Rooney;S.W.Lee;R.P.Howrey;C.A.Smith;B.A.Sullenger https://doi.org/10.1006/mthe.2000.0125
  50. Electrophoresis v.23 Aptamers as analytical reagents Clark,S.L.;V.T.Remcho https://doi.org/10.1002/1522-2683(200205)23:9<1335::AID-ELPS1335>3.0.CO;2-E
  51. Curr. Opin. Chem. Biol. v.1 Structure analysis of nucleic acid aptamers Patel,D.J. https://doi.org/10.1016/S1367-5931(97)80106-8
  52. Nat. Struct. Biol. v.7 The structural basis for molecular recognition by the vitamin $B^ {12}$ RNA aptamer Sussman,D.;J.C.Nix;C.Wilson https://doi.org/10.1038/71253
  53. Nat. Biotechnol. v.20 Nucleic acid evolution and minimization by nonhomologous random recombination Bittker,J.A.;B.V.Le;D.R.Liu https://doi.org/10.1038/nbt736
  54. PCR Methods Appl. v.3 Mutagenic PCR Cadwell,R.C.;G.F.Joyce https://doi.org/10.1101/gr.3.6.S136
  55. Nature v.370 Rapid evolution of a protein in vitro by DNA shuffling Stemmer,W.P. https://doi.org/10.1038/370389a0
  56. Curr. Opin. Chem. Biol. v.1 Aptamers as therapeutic and diagnostic reagents: problems and prospects Osborne,S.E.;I.Matsumura;A.D.Ellington https://doi.org/10.1016/S1367-5931(97)80102-0
  57. J. Immunol. v.159 Isolation and characterization of 2'-fluoro-, 2'-amino-, and 2'-fluoro-/amino-modified RNA ligands to human IFN-gamma that inhibit receptor binding Kubik,M.F.;C.Bell;T.Fitzwater;S.R.Watson;D.M.Tasset
  58. Encyclopedia of analytical chemistry Aptamers James,W.;R.A.Meyers(Ed.)
  59. J. Biol.Chem. v.275 In vitro selection of RNA molecules that inhibit the activity of ricin A-chain Hesselberth,J.R.;D.Miller;J.Robertus;A.D.Ellington https://doi.org/10.1074/jbc.275.7.4937
  60. J. Biol. Chem. v.275 HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity Kensch,O.;B.A.Connolly;H.J.Steinhoff;A.McGregor;R.S.Goody;T.Restle https://doi.org/10.1074/jbc.M001309200
  61. Biochem. Biophys. Res. Commun. v.279 The RNA aptamer-binding site of hepatitis C virus NS3 protease Hwang,J.;H.Fauzi;K.Fukuda;S.Sekiya;N.Kakiuchi;K.Shimotohno;K.Taira;I.Kursakabe;S.Nishikawa https://doi.org/10.1006/bbrc.2000.4007
  62. RNA v.6 In vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection Wang,J.;H.Jiang;F.Liu https://doi.org/10.1017/S1355838200992215
  63. Biochem. Biophys. Res. Commun. v.281 In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion Jeong,S.;T.Eom;S.Kim;S.Lee;J.Yu https://doi.org/10.1006/bbrc.2001.4327
  64. Curr. Opin. Pharmacol. v.1 Nucleic acid and polypeptide aptamers: A powerful approach to ligand discovery James,W. https://doi.org/10.1016/S1471-4892(01)00093-5
  65. J. Clin. Invest. v.106 Developing aptamers into therapeutics White,R.R.;B.A.Sullenger;C.P.Rusconi https://doi.org/10.1172/JCI11325
  66. J. Biol. Chem. v.270 Chemical modification of hammerhead ribozymes: Catalytic activity and nuclease resistance Beigelman,L.;J.A.Mcswiggen;K.G.Draper;C.Gonzalez;K.Jensen;A.M.Karpeisky;A.S.Modak;J.Matulicadamic;A.B.Direnzo;P.Haeberli;D.Sweedler;D.Tracz;S.Grimm;F.E.Wincott;V.G.Thackray;N.Usman https://doi.org/10.1074/jbc.270.43.25702
  67. Biochemistry v.34 Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor Jellinek,D.;L.S.Green;C.Bell;C.K.Lynott;N.Gill;C.Vargeese;G.Kirschnheuter;D.P.C.Mcgee;P.Abesinghe;W.A.Pieken;R.Shapiro;D.B.Rifken;D.Moscatelli;N.Janjic https://doi.org/10.1021/bi00036a009
  68. M. J. Biol. Chem. v.5 The generation and characterization of antagonist RNA aptamers to human oncostatin Rhodes,A.;A.Deakin;J.Spaull;B.Coomber;A.Aitken;P.Life;S.Rees
  69. J. Chromatogr. B: Biomed. Sci. Appl. v.732 Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys Tucker,C.E.;L.S.Chen;M.B.Judkins;J.A.Farmer;S.C.Gill;D.W.Drolet https://doi.org/10.1016/S0378-4347(99)00285-6
  70. Am. J. Pathol. v.154 Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers Floege,J.;T.Ostendorf;U.Janssen;M.Burg;H.H.Radeke;C.Vargeese;S.C.Gill;L.S.Green;N.Janjin https://doi.org/10.1016/S0002-9440(10)65263-7
  71. Bioconjug. Chem. v.9 Liposome-anchored vascular endothelial growth factor aptamers Willis,M.C.;B.D.Collins;T.Zhang;L.H.Green;D.P.Sebesta;C.Bell;E.Kellogg;S.C.Gill;A.Magallanez;S.Knauer;R.A.Bendele;P.S.Gill;N.Janjic;B.Collins https://doi.org/10.1021/bc980002x
  72. Nature v.355 Selection of single-stranded DNA molecules that bind and inhibit human thrombin Bock,L.C.;L.C.Griffin;J.A.Latham;E.H.Vermaas;J.J.Toole https://doi.org/10.1038/355564a0
  73. Blood v.83 novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation Li,W.X.;A.V.Kaplan;G.W.Grant;J.J.Toole;L.L.A.Leung
  74. Thromb. Haemostasis v.84 Blocking the initiation of coagulation by RNA aptamers to factor VIIa Rusconi,C.P.;A.Yeh;H.K.Lyerly;J.H.Lawson;B.A.Sullenger https://doi.org/10.1055/s-0037-1614126
  75. Nature v.362 Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo Kim,K.J.;B.Li;J.Winer;M.Armanini;N.Gillett;H.S.Phillips;N.Ferrara https://doi.org/10.1038/362841a0
  76. J. Biol. Chem. v.273 2'- Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced ascular permeability through interactions requiring the exon 7-encoded domain Ruckman,J.;L.S.Green;J.Beeson;S.Waugh;W.L.Gillette;D.D.Henninger;L.Claesson-Welsh;N.Janjic https://doi.org/10.1074/jbc.273.32.20556
  77. Pharm. Res. v.17 Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer(NX1838) following injection into the vitreous humor of rhesus monkeys Drolet,D.W.;J.Nelson;C.E.Tucker;P.M.Zack;K.Nixon;R.Bolin;M.B.Judkins;J.A.Farmer;J.L.Wolf;S.C.Gill
  78. Science v.263 High-resolution molecular discrimination by RNA Jenison,R.D.;S.C.Gill;A.Pardi;B.Polisky https://doi.org/10.1126/science.7510417
  79. Nat. Prod. Rep. v.16 Oligomeric and biogenetic combinatorial libraries Lowe,G. https://doi.org/10.1039/a809411j
  80. Methods Enzymol. v.267 SELEX primer Fitzwater,T.;B.A.Polisky https://doi.org/10.1016/S0076-6879(96)67019-0
  81. Nucleic Acids Res. v.25 Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide Dougan,H.;J.B.Hobbs;J.I.Weitz;D.M.Lyster https://doi.org/10.1093/nar/25.14.2897
  82. Nucleic Acids Res. v.24 Simple method for 30-labeling of RNA Huang,Z.;J.A.Szostak https://doi.org/10.1093/nar/24.21.4360
  83. Anal. Biochem. v.224 Nonradioactive 3'-end labeling of RNA molecules of different lengths by terminal deoxynucleotidyl transferase Rosemeyer,V.;A.Laubrock;R.Seibl https://doi.org/10.1006/abio.1995.1068
  84. Nucleic Acids Res. v.26 Staining of cell surface human CD4 with 2'-F-pyrimidine containing RNA aptamers for flow cytometry Davis,K.A.;Y.Lin;B.Abrams;S.D.Jayasena https://doi.org/10.1093/nar/26.17.3915
  85. Nat. Biotechnol. v.14 An enzyme-linked oligonucleotide assay Drolet,D.W.;L.Moon-McDermott;T.S.Romig https://doi.org/10.1038/nbt0896-1021
  86. Nucleic Acids Res. v.25 In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein Lochrie,M.A.;S.Waugh;D.G.Pratt;J.Jr.Clever;T.G.Parslow;B.Polisky,B. https://doi.org/10.1093/nar/25.14.2902
  87. J. Mol. Biol. v.272 Oligonucleotide inhibitors of human thrombin that bind distinct epitopes Tasset,D.M.;M.F.Kubik;W.Steiner https://doi.org/10.1006/jmbi.1997.1275
  88. Anal. Bioanal. Chem. v.372 Aptasensors-The fure of biosensing O'Sullivan,C.K. https://doi.org/10.1007/s00216-001-1189-3
  89. Cytometry v.33 Anti-L-selectin oligonucleotide ligands recognize CD62L-positive leukocytes: binding affinity and specificity of univalent and bivalent ligands Ringquist,S.;D.Parma https://doi.org/10.1002/(SICI)1097-0320(19981201)33:4<394::AID-CYTO2>3.0.CO;2-0
  90. Proc. Natl. Acad. Sci. USA v.92 Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition Lin,Y.;A.Padmapriya;K.M.Morden;S.D.Jayasena https://doi.org/10.1073/pnas.92.24.11044
  91. Anal. Chem. v.70 High-affinity RNA as a recognition element in a biosensor Kleinjung,F.;S.Klussman;V.A.Erdmann;F.W.Scheller;J.P.Furste;F.F.Bier https://doi.org/10.1021/ac9706483
  92. Anal. Chem. v.70 Adapting selected nucleic acid ligands(aptamers) to biosensors Potyrailo,R.A.;R.C.Conrad;A.D.Ellington;G.M.Hieftje https://doi.org/10.1021/ac9802325
  93. Anal. Biochem. v.282 A fiber-optic microarray biosensor using aptamers as receptors Lee,M.;D.R.Walt https://doi.org/10.1006/abio.2000.4595
  94. Genes Cells v.5 Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1 Yamamoto,R.;P.K.R.Kumar https://doi.org/10.1046/j.1365-2443.2000.00331.x
  95. Anal. Chem. v.70 Aptamers as ligands in affinity probe capillary electrophoresis German,I.;D.D.Buchanan;R.T.Kennedy https://doi.org/10.1021/ac980638h
  96. Anal. Chem. v.72 Separation of nontarget compounds by DNA aptamers Kotia,R.B.;L.Li;L.B.McGown https://doi.org/10.1021/ac991112f
  97. Electrophoresis v.22 Open-tubular capillary electrochromatography of bovine beta-lactoglobulin variants A and B using an aptamer stationary phase Rehder,M.A.;L.B.McGown https://doi.org/10.1002/1522-2683(200109)22:17<3759::AID-ELPS3759>3.0.CO;2-C
  98. Anal. Chem. v.69 High density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry O'Donnell,M.J.;K.Tang;H.Koster;C.L.Smith;C.R.Cantor https://doi.org/10.1021/ac961007v
  99. Anal. Chem. v.73 Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase Deng,Q.;I.German;D.Buchanan;R.T.Kennedy https://doi.org/10.1021/ac0105437
  100. Nature v.364 An RNA motif that binds ATP Sassanfar,M.;J.W.Szostak https://doi.org/10.1038/364550a0
  101. Biochemistry v.34 A DNA aptamer that binds adenosine and ATP Huizenga,D.E.;J.W.Szostak https://doi.org/10.1021/bi00002a033
  102. Nat. Biotechnol. v.17 Proteomics: translating genomics into products Dove,A. https://doi.org/10.1038/6972
  103. J. Biotechnol. v.81 Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers Golden,M.C.;B.D.Collins;M.C.Willis;T.H.Koch https://doi.org/10.1016/S0168-1656(00)00290-X