
Communications for Statistical Applications and Methods
2013, Vol. 20, No. 4, 339–345

DOI: http://dx.doi.org/10.5351/CSAM.2013.20.4.339

A Functional Central Limit Theorem for an ARMA(p, qp, qp, q)
Process with Markov Switching

Oesook Lee1,a

aDepartment of Statistics, Ewha Womans University

Abstract

In this paper, we give a tractable sufficient condition for functional central limit theorem to hold in Markov
switching ARMA (p, q) model.
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1. Introduction

Since the seminal work of Hamilton (1989), nonlinear time series models subject to Markov switching
are widely used for modelling dynamics in different fields, especially in econometric studies (Krolzig,
1997; Hamilton and Raj, 2002). Markov switching autoregressive moving average(MSARMA)(p, q)
model, in which a hidden Markov process governs the behavior of an observable time series, exhibits
structural breaks and local linearity. When we consider a time series model as a data generating pro-
cess, one of the important properties to show is the (functional) central limit theorem. Functional
central limit theorem(FCLT) is applied for statistical inference in time series to establish the asymp-
totics of various statistics concerning, for example a test for stability such as CUCUM or MOSUM
and unit root testing. Probabilistic properties of MSARMA(p, q) models have been studied in, e.g.,
Francq and Zakoı̈an (2001), Yao and Attali (2000), Yang (2000), Lee (2005), and Stelzer (2009).

The purpose of this paper is to find a sufficient condition under which FCLT holds for the partial
sums processes of the given MSARMA(p, q) models. The typical approach to obtaining the FCLT for
nonlinear time series models is to show that a specific dependence property such as various mixing
condition, Lp-NED(near-epoch dependent), association or θ,L or ψ-weak dependence holds. How-
ever, restrictive conditions such as distributional assumptions on errors and higher order moment are
required in order to prove such dependence properties (Ango Nze and Doukhan, 2004; De Jong and
Davidson, 2000; Davidson, 2002; Dedecker et al., 2007; Doukhan and Wintenberger, 2007; Harrn-
dorf, 1984).

Our proof is based on Theorem 21.1 of Billingsley (1968) that is an extension of the results of
Ibragimov (1962). The proof is short and relies on a second moment assumption.
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2. Results

We consider the following Markov switching autoregressive moving average (MSARMA)(p, q) model,
where ARMA coefficients are allowed to change over time according to a Markov chain:

xt =

p∑
i=1

ϕi(ut−1)xt−i +

q∑
j=1

θ j(ut−1)et− j + et, t ∈ Z, (2.1)

where p ≥ 1, q ≥ 0, {ut} is an irreducible aperiodic Markov chain on a finite state space E with n-step
transition probability matrix P(n) = (p(n)

u,v)u,v∈E and the stationary distribution π, ϕi(u) and θ j(u)(i =
1, 2, . . . , p, j = 1, 2, . . . , q, u ∈ E) are constants and {et} is a sequence of independent and identically
distributed random variables with mean 0 and finite variance σ2. We assume that {ut} and {et} are
independent.

Assuming without loss of generality that p = q and letting Xt = (xt, xt−1, . . . , xt−p+1)′ and εt =

(et, et−1, . . . , et−p+1)′, define p × p matrix

Φt = Φ(ut) =



ϕ1(ut) ϕ2(ut) · · · ϕp−1(ut) ϕp(ut)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


and

Θt = Θ(ut) =



θ1(ut) θ2(ut) · · · θp−1(ut) θp(ut)
−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0


.

Then

Xt = Φt−1Xt−1 + Θt−1εt−1 + εt (2.2)

and xt = c′Xt, c′ = (1, 0, . . . , 0).
Applying recursively the Equation (2.2), after m-step we have that

Xt = Π
m
j=1Φt− jXt−m +

m−1∑
k=1

Πk−1
j=1Φt− j(Φt−k + Θt−k)εt−k + Π

m−1
j=1 Φt− jΘt−mεt−m + εt (2.3)

(assume Π0
j=1Φt− j = I).

We make the assumptions.

(A1) ρ :=
∑p

i=1 αi < 1 with αi = supu∈E
(
E(ϕ2

i (u1)|u0 = u)
) 1

2 .

Note that the assumption (A1) depends only on the autoregressive coefficients ϕi(ut) of the Equa-
tion (2.1). Next theorem is for the existence of a strictly stationary solution to the Equation (2.1).



A Functional Central Limit Theorem for an ARMA(p, q) Process with Markov Switching 341

Theorem 1. Suppose the assumption (A1) holds. Then there is a unique non-anticipative strictly
stationary solution xt to (2.1) with E(x2

t ) < ∞.

Proof: Define

X∗t =
∞∑

k=1

(
Πk−1

j=1Φt− j

)
(Φt−k + Θt−k) εt−k + εt. (2.4)

Then according to Minkowski inequality, we have that

(
E(c′X∗t )2

) 1
2
=

∥∥∥c′X∗t
∥∥∥

2 ≤
∞∑

k=1

∥∥∥c′Πk−1
j=1Φt− j(Φt−k + Θt−k)εt−k

∥∥∥
2
+ σ2.

Let βi := (Eπ(ϕi(ut) + θi(ut))2)1/2 < ∞. Apply the independence of {ut} and {et} and Minkowski
inequality and use the assumption (A1) to obtain, after some tedious calculations, that∥∥∥c′Πk−1

j=1Φt− j (Φt−k + Θt−k) εt−k

∥∥∥
2
≤ C(k − 1), k = 1, 2, 3, . . . ,

where

C := C(0) = σ

 p∑
i=1

βi

 ,
C(1) = α1C ≤ ρC,

C(2) =
(
α2

1 + α2

)
≤ ρC,

...

C(p) = α1C(p − 1) + α2C(p − 2) + · · · + αpC ≤ ρC.

Moreover,

C(p + 1) = α1C(p) + α2C(p − 1) + · · · + αpC(1) ≤ ρ2C,

C(p + 2) = α1C(p + 1) + α2C(p) + · · · + αpC(2) ≤ ρ2C,
...

In general, for 1 ≤ r ≤ p, m ≥ 0,

C(mp + r) = α1C(mp + r − 1) + α2C(mp + r − 2) + · · · + αpC((m − 1)p + r) ≤ ρm+1C.

Therefore,

∞∑
k=1

∥∥∥c′Πk−1
j=1Φt− j(Φt−k + Θt−k)εt−k

∥∥∥
2
≤ C

∞∑
k=1

ρ
[

(k−1)
p

]
+1 < ∞. (2.5)

Hence we have that E(c′X∗t )2 < ∞ and x∗t = c′X∗t < ∞ a.e. One can easily verify that X∗t in (2.4) is a
strictly stationary sequence satisfying (2.2).
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To prove the uniqueness, assume that X̂t is any non-anticipative, strictly stationary solution to
(2.2) with E(c′X̂t)2 < ∞. Obviously X̂t satisfies (2.3) for every m ≥ 1 and thus we obtain that
X∗t − X̂t = (Πm

j=1Φt− j)(X∗t−m − X̂t−m).

E
∣∣∣x∗t − x̂t

∣∣∣ = E
∣∣∣∣c′ (X∗t − X̂t

)∣∣∣∣
= E

∣∣∣∣c′Πm
j=1Φt− j

(
X∗t−m − X̂t−m

)∣∣∣∣
≤

p∑
i=1

E
∣∣∣∣(x∗t−m−i+1 − x̂t−m−i+1

)
c′

(
Πm

j=1Φt− j

)
νi

∣∣∣∣
≤

p∑
i=1

∥∥∥x∗t−m−i+1 − x̂t−m−i+1
∥∥∥

2

∥∥∥c′Πm
j=1Φt− jνi

∥∥∥
2
,

where νi = (0, . . . , 0, 1, 0, . . . , 0), 0 except the ith entry which is 1. Adopt the similar method used to
derive the inequality (2.5), then we have that ∥c′Πm

j=1Φt− jνi∥2 ≤ Mρ[(m−1)/p] → 0 as m → 0, where
M =

∑p
i=1 Eπ|ϕi(ut)| < ∞. Thus we have that E|x∗t − x̂t | = 0, and x∗t = x̂t a.e. Take xt = x∗t to get the

conclusion. �

A stationary process (xt)t∈Z is called φ- mixing if

φn = sup
{
|P(E2|E1) − P(E2)| : E1 ∈ F k

−∞, E2 ∈ F ∞k+n

}
→ 0

as n→ ∞, where for s < t, F t
s := σ(xs, xs+1, . . . , xt).

Let [x] denote the largest integer not exceeding x and let “
D→ ” denote convergence in distribution.

Let B denote standard Brownian motion on [0, 1]. Following theorem is our main result.

Theorem 2. Suppose the assumption (A1) holds. Then for a strictly stationary solution xt of (2.1)
with E(x2

t ) < ∞, τ2 = Var(x0) + 2
∑

1≤k<∞Cov(x0, xt) is convergent and as n→ ∞,

1
√

n

[nξ]∑
t=1

xt
D→ τB(ξ), 0 ≤ ξ ≤ 1.

Proof: Note that vt := (ut−1, et, et−1, . . . , et−p) is an aperiodic E × Rp+1-valued Markov chain. Since
{ut} is a positive recurrent Markov chain with finite state space, {ut} is exponentially φ-mixing. By
independence of {ut} and {et}, {vt} is also exponentially φ−mixing with

∑
φ1/2

n < ∞. By the above
Theorem 1,

xt = c′
∞∑

k=1

(
Πk−1

j=1Φt− j

)
(Φt−k + Θt−k) εt−k + c′εt,

and take

xt,l = c′
l∑

k=1

(
Πk−1

j=1Φt− j

)
(Φt−k + Θt−k) εt−k + c′εt.
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{xt,l} is stationary for each l. For some measurable functions f and fl, we can write

xt = f (vt, vt−1, vt−2, . . .) ,

and

xt,l = fl (vt, vt−1, vt−2, . . . , vt−l+1) .

Then we have that ∥∥∥xt − xt,l

∥∥∥
2 =

∥∥∥∥∥∥∥c′
∞∑

k=l+1

(
Πk−1

j=1Φt− j

)
(Φt−k + Θt−k) εt−k

∥∥∥∥∥∥∥
2

≤
∞∑

k=l+1

∥∥∥∥c′
(
Πk−1

j=1Φt− j

)
(Φt−k + Θt−k) εt−k

∥∥∥∥
2

≤ C
∞∑

k=l+1

ρ
[

(k−1)
p

]
+1.

Thus,

∞∑
l=1

∥∥∥xt − xt,l

∥∥∥
2 ≤ C

∞∑
l=1

∞∑
k=l+1

ρ
[

(k−1)
p

]
+1

≤ Cp2
∞∑

l=1

∞∑
i=0

ρi+l

= Cp2 ρ

(1 − ρ)2

< ∞.

Applying Theorem 21.1 in Billingsley (1968) yields the conclusion. �

Remark 1. For xt in (2.1), define a process Yt = A(ut)Yt−1 + ηt, with Yt = (xt−1, . . . , xt−p, et, . . . ,
et−q+1) for properly defined (p + q) × (p + q) matrix A(ut) and (p + q) × 1 vector ηt. If we take
Wt = (ut,Y ′t )′, then Wt is a Markov chain. One way to prove the FCLT is to use the Markovian
structure of the model to obtain mixing properties. If Wt is ϕ-irreducible weak Feller and top Lyapunov
exponent of A(ut) is negative, then the process Yt is geometrically ergodic and β-mixing and the
FCLT for xt is obtained (Lee, 2005). The stationarity and geometric ergodicity for vector valued
MSARMA(p, q) process with a general state space parameter chain are examined by Stelzer (2009).

Remark 2. It is known that if the largest modulus of the eigenvalues λ of the set Φ(u), u ∈ E is less
than 1, then the FCLT holds for xt (Davidson, 2002, p.256).

Following is a simple example, which shows that λ > 1, but the FCLT holds due to Theorem 2.

Example 1. Consider a MSARMA(3, 2) process given by

xt =

3∑
i=1

ϕi(ut−1)xt−i +

2∑
j=1

θ j(ut−1)et− j + et, (2.6)
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where {ut} is a Markov chain with state space E = {1, 2, 3} and one step transition probability matrix
P is given by

P =

 0.3 0.2 0.5
0.25 0.3 0.45
0.3 0.3 0.4

 .
Take

(ϕ1(1), ϕ2(1), ϕ3(1)) = (0.1, 0.3, 0.01),
(ϕ1(2), ϕ2(2), ϕ3(2)) = (1.1, 0.2, 0.2),
(ϕ1(3), ϕ2(3), ϕ3(3)) = (0.2, 0.03, 0.2),

and

Φ(u) =

 ϕ1(u) ϕ2(u) ϕ3(u)
1 0 0
0 1 0

 , u ∈ E.

For the above example, the largest modulus of the eigenvalues λ of the setΦ(1),Φ(2) andΦ(3) is larger
than 1 but

∑3
i=1 supu∈E(E(ϕ2

i (u1)|u0 = u))1/2 < 1. Hence Theorem 1 and 2 guarantee the existence of a
strictly stationary solution xt of (2.6) and the FCLT for {xt}.
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