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Abstract
We propose principal differential analysis based classification methods. Computations of squared multiple

correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine
principal differential analysis results with the logistic regression for binary classification. In the numerical study,
we compare the principal differential analysis based classification methods with functional principal component
analysis based classification. Various scenarios are considered in a simulation study, and principal differential
analysis based classification methods classify the functional data well. Gene expression data is considered for
real data analysis. We observe that the PDA score based method also performs well.

Keywords: functional data analysis, classification, principal differential analysis, functional princi-
pal component analysis

1. Introduction

Functional data analysis (FDA) is a popular statistical method that deals with the analysis and theory
of data in the form of functions, images, shapes, and general objects. Basic ideas for FDA were first
proposed by Grenander (1950); statistical features and analysis of FDA are established by Ramsay
(1982) and Ramsay and Dalzell (1991).

Principal differential analysis (PDA) is a popular technique that estimates a differential operator
from a functional data. It was first proposed by Ramsay (1996) to find low dimensional approximations
to functional data. PDA finds linear differential operator L,

L = β0 + · · · + βm−1Dm−1 + Dm,

where Dm = dm/dtm is mth derivative, such that Lx = 0 for functional observation x. The dimension
reduction is achieved by projecting the curve onto the null space of the differential operator. PDA has
been applied to various fields with related theories still being expanded. For example, Jin et al. (2013)
extended PDA to allow for coefficients in the linear differential operator to smoothly depend upon a
single continuous covariate. Staniswalis et al. (2017) proposed local PDA and analyzed the evoked
brain potential curves of children.

Functional principal component analysis (FPCA) is another approach for identifying a low-dimen-
sional nonparametric basis for describing functional data; in addition, PDA is often compared with the
FPCA (Jin et al., 2013; Dalla et al., 2014). FPCA finds eigenfunctions, which analogue to eigenvec-
tors in multivariate principal component analysis (MPCA), and then calculates functional principal
component scores (FPC scores) to explain the variance of observed functional data.
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PDA and FPCA are similar methods in view of low dimensional approximation, and both methods
can be used for classification problem. Functional data classification can be performed by functional
regression models that feature class labels as responses and the observed functional data as predictors,
and most functional data classification methods apply a dimension reduction technique using a trun-
cated expansion in a pre-specified function basis. Müller (2005) proposed functional binary regression
models based on FPCA and applied the method to the primary biliary cirrhosis patients data, in order
to classify early time courses of bilirubin. Nie et al. (2018) also considered FPC scores in logistic
regression, then classified alcoholic and control groups using electroencephalography (EEG) dataset.

For the PDA based classification methods, Reimer and Rudzicz (2010) proposed a PDA classifier
based on RSQ, and Sattar and Rudzicz (2016) extended the approach by using a support vector ma-
chine. Dalla et al. (2014) compared quadratic discriminant analysis with PDA components and that of
the FPC scores.

In this paper, we consider two PDA based classification methods, RSQ based method and PDA
score based method. Unlike other studies that used RSQ and PDA scores for the classification (Reimer
and Rudzicz, 2010; Dalla et al., 2014), we use them as covariates in logistic regression model and
examine their role as predictors.

The paper is organized as follows. In Section 2, we briefly review the PDA and the classification
methods based on PDA are introduced. Simulation results are presented in Section 3, and real data
analysis is in Section 4. Finally, in Section 5, some concluding remarks are reported.

2. Methodology

2.1. Principal differential analysis

Here, we briefly review the PDA. PDA assumes that given functional data x(t) follows a linear differ-
ential operator L for t ∈ R;

Lx(t) = β0(t)x(t) + · · · + βm−1(t)Dm−1x(t) + Dmx(t) = f (t),

where β j(t) is called as weight function or coefficient, and f (t) is forcing function, which is set to 0
for homogeneous case. Throughout the paper, we set f (t) = 0.

Given N observed functional data, xi(t), i = 1, . . . ,N, coefficients {β j(t)}m−1
j=0 can be estimated by

least squares approach defined as,

SSEL =

N∑
i=1

∫
[Lxi(t)]2dt =

N∑
i=1

‖ Lxi ‖
2 . (2.1)

In matrix form, (2.1) can be represented as

SSEL = [w(t) − Z(t)β(t)]
′

[w(t) − Z(t)β(t)],

where w(t) = (w1(t), . . . ,wN(t))′, with wi(t) = Dmxi(t), β(t) = (β0(t), . . . , βm−1(t))′, and Z(t) is N × m
matrix whose ith row is zi(t) = {−xi(t), . . . ,−Dm−1xi(t)}, for i = 1, . . . ,N. Then, the least square
solution can be obtained as

β̂(t) = [Z(t)′Z(t)]−1Z(t)′w(t). (2.2)

The order m is often determined by theoretical backgrounds of specific domain. If there is no funda-
mental theory specifying m for given data, the order can be selected by cross-validation classification
error rate.

A more detailed description of PDA can be found in Ramsay and Silverman (2005).
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2.2. Smoothing

Random error may be included in observation in analyzing real data; however, it makes the curvature
of observed data complex or too variable. Such variation can cause low performance in FDA including
PDA. To solve the problem, smoothing techniques are usually applied to reduce the roughness of the
observed functional data (Rice, 2004). Popular smoothing methods are basis-expansion, smoothing
penalties, and kernel methods.

In this paper, we represent functional data xi(t), i = 1, . . . ,N, as linear combination of K basis
functions, {φk}, which are smooth, continuous, and differentiable functions;

xi(t) =

K∑
k=1

cikφk(t) + εi(t) = c′iφ + εi(t), i = 1, . . . ,N, (2.3)

where ci = (ci1, . . . , ciK)′ with constant cik’s, φ = (φ1(t), . . . , φK(t))′, and εi(t) is random error. Fourier
basis, polynomial basis, and B-spline basis are popular basis functions for φ (Kosarev and Pantos,
1983; Wand, 2000).

Once the type of basis is determined, coefficient ci is estimated by minimizing ordinary least
squares as follow (Ramsay and Silverman, 2005),

SMSSE =

N∑
i=1

T∑
j=1

xi(t j) −
K∑

k=1

cikφk(t j)

2

,

where t j, for j = 1, . . . ,T , is equally spaced time point.
A high degree of smoothing may be obtained by reducing the order of the basis expansionn;

however, a finer control of the smoothing degree is achieved by using a roughness penalty approach
as,

PENSSE =

N∑
i=1

T∑
j=1

xi(t j) −
K∑

k=1

cikφk(t j)

2

+ λ

∫ [
D2xi(t)

]2
dt, (2.4)

where λ is a smoothing parameter controls roughness of the data. If we set large λ, the curvature of
data becomes simpler. The optimal value of the smoothing parameter λ can be estimated using proper
criterion such as generalized cross-validation (GCV) (Craven and Wahba, 1979).

Throughout this paper, we use Fourier basis and B-spline basis and λ is selected by GCV.

2.3. PDA classification

Given functional curve xi(t), i = 1, . . . ,N, and its corresponding label variable yi ∈ {0, 1}, i = 1, . . . ,N,
we consider two different classification methods based on PDA. One is RSQ based method, and the
other is PDA scores based method.

2.3.1. RSQ based classification

RSQ is one of the popular tool to measure the goodness-of-fit in PDA (Ramsay, 1996) and defined by
point-wise squared multiple correlation function;

RSQ :=
∑N

i=1 ‖D
mxi‖

2 −
∑N

i=1 ‖Lxi‖
2∑N

i=1 ‖Dmxi‖
2 =

SSE0 − SSEL

SSE0
,
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where SSE0 =
∑N

i=1 ‖D
mxi‖

2 is a logical baseline against SSEL in (2.1). Then, RSQ has value from 0
to 1, and value equal to 1 implies perfect fit.

In this paper, we use RSQ as the covariate in the logistic regression. To do that, we compute
individual RSQ value for each curve, RSQi,c, for i = 1, . . . ,N, using the curves in class c. We consider
functional data in class c ∈ C, {xc

1, . . . , x
c
Nc
}, where Nc is the number of curves in class c. The curves

are smoothed by (2.4), and then linear differential operator, Lc, is estimated by PDA for each class c.
Then RSQi,c, for i = 1, . . . ,N, is defined as

RSQi,c :=
‖Dmxi‖

2 − ‖Lcxi‖
2

‖Dmxi‖
2 . (2.5)

Now, RSQi,c with c ∈ {1, 2} are used as predictors for the logistic regression as follows;

logit(pi) = α0 + α1RSQi,1 + α2RSQi,2 + εi, i = 1, . . . ,N,

where pi = Pr(ci = 2). For the binary classification, we use a classification threshold 0.5.

2.3.2. PDA scores based classification

Similar to the scores defined in the FPCA, we can define PDA scores for functional data. The kth PDA
scores of xi(t) are defined as

sik :=
T∑

j=1

(xi(t j) − µ(t j))ψk(t j), i = 1, . . . ,N, k = 1, . . . ,m,

where µ(t) is the mean curve, and the eigenfunctions, {ψk(t)}mk=1, are estimated by resolving differential
equation (Dalla et al., 2014). Once the coefficients β̂(t) are obtained through (2.2), the eigenfunctions
are estimated as

ψ̂1(t) := eλ̂1t, . . . , ψ̂K(t) =: eλ̂mt,

where {λ̂k}
m
k=1 are complex roots of the characteristic polynomial

λm + β̂m−1λ
m−1 + · · · + β̂1λ + β̂0 = 0.

Then, PDA scores are also used as predictors for the binary classification methods. For the logistic
regression, the formula can be written as

logit(pi) = α0 + α1 ŝi1 + · · · + αm ŝim + εi, i = 1, . . . ,N,

where pi = Pr(ci = 2). For the binary classification, we use a classification threshold 0.5.
One may use other conventional classification method, such as support vector machine (SVM) or

random forest, rather than the logistic regression.

3. Simulation study

3.1. Simulation data

For each group c ∈ {1, 2}, we generate 100 functional data, xc
i (t j), for i = 1, . . . , 100, over the interval

t j ∈ [−5, 5]. Time points are equally spaced as t j = −5 + j/20, for j = 1, . . . , 200.
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Based on the following five scenarios, we generate total N = 200 curves. The simulation settings
are motivated from Dalla et al. (2014).

• Simulation I

x1
i (t) = ai1 cos(πt) + ai2 sin(πt) + bεi(t), i = 1, . . . , 100,

x2
i (t) = ai1 cos(3πt) + ai2 sin(3πt) + bεi(t), i = 1, . . . , 100,

where the random coefficient aik, for k = 1, 2 is generated from N(0, 1) or N(1, 1), and constant
weight b is set to 0.1 or 1. εi’s generated from N(0,Σ), with three covariance structures, simple Σind,
compound symmetry ΣCS and the first-order auto-regressive ΣAR(1) (Kincaid, 2005);

Σind =


1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 0 · · · · · · 1

 , ΣCS =


1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
...

. . .
...

ρ ρ · · · · · · 1

 , ΣAR(1) =


1 ρ ρ2 · · · ρ99

ρ 1 ρ · · · ρ98

...
. . .

...
ρ99 ρ98 · · · · · · 1

 ,
with ρ = 0.1, 0.4, and 0.7.

From the Simulation II to V, all coefficients are generated in the same way as Simulation I, unless
specifically stated.

• Simulation II

x1
i (t) = ai1e0.25t cos(πt) + ai2e0.25t sin(πt) + bεi(t), i = 1, . . . , 100,

x2
i (t) = ai1e0.5t cos(3πt) + ai2e0.5t sin(3πt) + bεi(t), i = 1, . . . , 100.

• Simulation III

x1
i (t) = ai1

(
0.01t + 0.4t2 − 0.003t3 + 0.0006t4

)
+ bεi(t), i = 1, . . . , 100,

x2
i (t) = 3ai1 cos(3πt) + 3ai2 sin(3πt) + bεi(t), i = 1, . . . , 100.

• Simulation IV

x1
i (t) = ai1 sin(πt) + bεi(t), i = 1, . . . , 100,

x2
i (t) = ai1 cos(πt) + bεi(t), i = 1, . . . , 100,

where ai1 ∼ N(µ, 1) with µ = 1, 2.

• Simulation V

x1
i (t) = ai1{cos(πt) + 0.1et} + bεi(t), i = 1, . . . , 100,

x2
i (t) = ai2{cos(πt) + 0.1et} + bεi(t), i = 1, . . . , 100,

where ai1 ∼ N(µ, 1) and ai2 ∼ N(−µ, 1) with µ = 1, 2.

The generated functional curves from each scenario are presented in Figure 1 and Figure 2. For
each data set, PDA classification methods using RSQ and PDA scores are performed. The results are
compared with the conventional FPCA classification (Ramsay and Silverman, 2005; Leng and Müller,
2006). We consider one to five PCs in FPCA and the best performed results are presented in the paper.
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Figure 1: (Left to right) Data curves from simulation I to V when aik ∼ N(0, 1), k = 1, 2 for simulation I to III,
aik ∼ N(1, 1) for simulation IV, ai1 ∼ N(1, 1), ai2 ∼ N(−1, 1) for simulation V, and b = 0.1.
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Figure 2: (Left to right) Data curves from simulation I to V when aik ∼ N(1, 1), k = 1, 2 for simulation I to III,
aik ∼ N(2, 1) for simulation IV, ai1 ∼ N(2, 1), ai2 ∼ N(−2, 1) for simulation V, and b = 0.1.

3.2. Results

We divide the data set into training and test data, where the training data is 80% of whole data. B-
spline and Fourier basis are considered for smoothing. The number of basis functions is determined by
grid search algorithm. For the PDA classification methods, the optimal order of differential equation,
m, is obtained by 8-fold cross validation.

The classification results are validated by classification error rate (CER), calculated as

CER = 1 − accuracy = 1 −
number of classified correct
number of classified total

.

To provide the lowest achievable error rate, the estimated Bayes error rate for each data generating
scheme is also presented. It is hard to obtain Bayes error directly (Fukunaga , 2013), we estimate the
error based on the nearest neighbor (NN) classifiers (Cover and Hart, 1967; Tumer and Ghosh, 2003).
Consider Ebayes = 1 −

∑2
i=1

∫
Ci

P(ci)p(x|ci)dx, where Ci is the region where class i has the highest
posterior, P(ci) is the priori class probability of class i, and p(x|ci) is the class likelihood. Then, for a
two-class problem with sufficiently large data, we have

1
2

(
1 −

√
1 − 2ENN

)
≤ Ebayes ≤ ENN,

where ENN = limn→∞ P(θ , θ′n|x, x′n). Here, θ denotes the true class of x and θn denotes the class of
xn, where xn is the nearest neighbor of x. For more details, see Cover and Hart (1967).
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Figure 3: (Left) the scatter plots of the PDA scores, (si1, si2) for simulation I and (Right) simulation V.
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Figure 4: The histograms of selected order m in 100 repetitions. For the Simulation I–III, we set aik ∼ N(0, 1),
and for the Simulation IV and V, we set µ = 1 in the generation of aik. Also, b = 0.1 and independent covariance

structure assumed.

For the implementation of PDA and FPCA, R package “fda.usc” and “fda” are used for com-
putation. We repeat the process 100 times with different training-test set division. The averaged error
rates and their standard error are presented in Tables 1–5. Marked in boldface are the lowest error rate
for each case.

Note that the results from Fourier basis are not different from that of B-spine, results from Fourier
basis are omitted. Also, the classification based on SVM gives similar results to logistic regression,
therefore we omit the results from SVM. The whole results are available in https://github.com/yaeji-
lim/PDA clustering.

From the tables, PDA score based method shows similar performance as FPCA classification.
However, RSQ based method shows a different performance. The simulation I to III, RSQ based
method shows the superiority over the two score based methods, while in simulation IV and V, RSQ
based method works poorly. From the (2.5), we can expect that the RSQ cannot distinguish two
curves that have the same structure, but differ in amplitude only, as in the simulation V. Also, if the
two curves have similar norm as in the simulation IV, the RSQ based method fails, even worse than
random-guessing.

Note that the range of RSQ values when Σ = Σind and b = 0.1 is −8.88×10−4 ∼ 4.09×10−4 for class
1 and −8.89×10−4 ∼ 4.09×10−4 for class 2 in the simulation V (µ = 1), and −1.01×10−8 ∼ 2.22×10−8

for class 1 and −1.23×10−7 ∼ 5.54×10−8 for class 2 in the simulation IV (ai j = N(1, 1)). On the other
hand, the range of RSQ values is −1.78×10−4 ∼ 1.83×10−6 for class 1 and −1.24×10−3 ∼ 3.71×10−6

for class 2 in the simulation I (ai j = N(0, 1)).
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Table 1: Averaged error rate and its standard error in parenthesis for B-spline smoothed data of the simulation I
b ai j Bayes error Method CER

Σind

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.45 (0.11)
FPCA 0.53 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.06 (0.03)
FPCA 0.08 (0.04)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.07
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.45 (0.08)
FPCA 0.52 (0.14)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.07 (0.03)
FPCA 0.07 (0.03)

ΣCS, ρ = 0.1

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.44 (0.12)
FPCA 0.53 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.06 (0.03)
FPCA 0.08 (0.04)

1

N(0, 1) 0.01 ≤ Ebayes ≤ 0.11
PDA(RSQ) 0.04 (0.03)

PDA(scores) 0.55 (0.07)
FPCA 0.55 (0.08)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.06
PDA(RSQ) 0.04 (0.03)

PDA(scores) 0.11 (0.04)
FPCA 0.08 (0.04)

ΣCS, ρ = 0.4

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.44 (0.10)
FPCA 0.53 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.06 (0.03)
FPCA 0.08 (0.03)

1

N(0, 1) 0.02 ≤ Ebayes ≤ 0.12
PDA(RSQ) 0.05 (0.04)

PDA(scores) 0.53 (0.07)
FPCA 0.56 (0.05)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.06
PDA(RSQ) 0.07 (0.04)

PDA(scores) 0.23 (0.07)
FPCA 0.07 (0.04)

ΣAR(1), ρ = 0.1

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.02)

PDA(scores) 0.45 (0.11)
FPCA 0.53 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.06 (0.03)
FPCA 0.08 (0.04)

1

N(0, 1) 0.01 ≤ Ebayes ≤ 0.09
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.48 (0.09)
FPCA 0.54 (0.14)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.04
PDA(RSQ) 0.04 (0.03)

PDA(scores) 0.08 (0.03)
FPCA 0.09 (0.03)

ΣAR(1), ρ = 0.4

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.46 (0.12)
FPCA 0.53 (0.18)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.06 (0.03)
FPCA 0.08 (0.04)

1

N(0, 1) 0.01 ≤ Ebayes ≤ 0.09
PDA(RSQ) 0.08 (0.03)

PDA(scores) 0.48 (0.07)
FPCA 0.51 (0.11)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.06
PDA(RSQ) 0.06 (0.03)

PDA(scores) 0.08 (0.04)
FPCA 0.09 (0.03)

ΣAR(1), ρ = 0.7

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.02)

PDA(scores) 0.45 (0.12)
FPCA 0.53 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.01 (0.02)

PDA(scores) 0.06 (0.03)
FPCA 0.08 (0.04)

1

N(0, 1) 0.07 ≤ Ebayes ≤ 0.14
PDA(RSQ) 0.16 (0.05)

PDA(scores) 0.50 (0.07)
FPCA 0.54 (0.08)

N(1, 1) 0.01 ≤ Ebayes ≤ 0.07
PDA(RSQ) 0.06 (0.03)

PDA(scores) 0.16 (0.05)
FPCA 0.09 (0.04)
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Table 2: Averaged error rate and its standard error in parenthesis for B-spline smoothed data of the simulation II
b ai j Bayes Error Method CER

Σind

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.44 (0.08)
FPCA 0.42 (0.18)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.10 (0.05)
FPCA 0.08 (0.03)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.45 (0.07)
FPCA 0.43 (0.18)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.16 (0.05)
FPCA 0.08 (0.03)

ΣCS, ρ = 0.1

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.44 (0.08)
FPCA 0.42 (0.18)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.10 (0.05)
FPCA 0.08 (0.03)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.49 (0.08)
FPCA 0.43 (0.18)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.14 (0.05)
FPCA 0.08 (0.03)

ΣCS, ρ = 0.4

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.45 (0.09)
FPCA 0.42 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.10 (0.04)
FPCA 0.08 (0.03)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.01 (0.02)

PDA(scores) 0.46 (0.07)
FPCA 0.43 (0.18)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.04
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.14 (0.05)
FPCA 0.08 (0.03)

ΣAR(1), ρ = 0.1

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.44 (0.08)
FPCA 0.42 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.10 (0.04)
FPCA 0.08 (0.03)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.43 (0.07)
FPCA 0.42 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.14 (0.05)
FPCA 0.08 (0.03)

ΣAR(1), ρ = 0.4

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.45 (0.08)
FPCA 0.42 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.10 (0.04)
FPCA 0.08 (0.03)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.47 (0.06)
FPCA 0.44 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.16 (0.05)
FPCA 0.08 (0.03)

ΣAR(1), ρ = 0.7

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.45 (0.08)
FPCA 0.42 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.10 (0.05)
FPCA 0.08 (0.03)

1

N(0, 1) 0.01 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.03 (0.02)

PDA(scores) 0.50 (0.08)
FPCA 0.43 (0.16)

N(1, 1) 0.02 ≤ Ebayes ≤ 0.05
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.18 (0.05)
FPCA 0.08 (0.03)
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Table 3: Averaged error rate and its standard error in parenthesis for B-spline smoothed data of the simulation III
b ai j Bayes Error Method CER

Σind

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.47 (0.15)
FPCA 0.51 (0.19)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.07 (0.04)
FPCA 0.07 (0.04)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.04
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.47 (0.13)
FPCA 0.52 (0.08)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.08 (0.05)
FPCA 0.07 (0.04)

ΣCS, ρ = 0.1

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.48 (0.15)
FPCA 0.51 (0.19)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.02)

PDA(scores) 0.07 (0.04)
FPCA 0.06 (0.04)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.04
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.46 (0.09)
FPCA 0.52 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.10 (0.05)
FPCA 0.06 (0.04)

ΣCS, ρ = 0.4

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.02)

PDA(scores) 0.47 (0.15)
FPCA 0.51 (0.19)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.00 (0.01)

PDA(scores) 0.07 (0.04)
FPCA 0.07 (0.04)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.05
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.50 (0.08)
FPCA 0.52 (0.15)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.08 (0.04)
FPCA 0.07 (0.04)

ΣAR(1), ρ = 0.1

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.48 (0.15)
FPCA 0.50 (0.07)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.07 (0.04)
FPCA 0.07 (0.04)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.04
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.47 (0.12)
FPCA 0.51 (0.19)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.00 (0.00)

PDA(scores) 0.10 (0.05)
FPCA 0.06 (0.04)

ΣAR(1), ρ = 0.4

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.02)

PDA(scores) 0.47 (0.15)
FPCA 0.49 (0.07)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.06 (0.04)
FPCA 0.07 (0.04)

1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.06
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.48 (0.11)
FPCA 0.50 (0.07)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.12 (0.05)
FPCA 0.07 (0.04)

ΣAR(1), ρ = 0.7

0.1

N(0, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.47 (0.15)
FPCA 0.51 (0.19)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.01 (0.01)

PDA(scores) 0.06 (0.04)
FPCA 0.07 (0.04)

1

N(0, 1) 0.02 ≤ Ebayes ≤ 0.07
PDA(RSQ) 0.04 (0.03)

PDA(scores) 0.49 (0.12)
FPCA 0.52 (0.17)

N(1, 1) 0.00 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.03 (0.02)

PDA(scores) 0.13 (0.04)
FPCA 0.06 (0.04)
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Table 4: Averaged error rate and its standard error in parenthesis for B-spline smoothed data of the simulation IV
b ai j Bayes Error Method CER

Σind

0.1

N(1, 1) 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.51 (0.08)

PDA(scores) 0.16 (0.05)
FPCA 0.16 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.21 (0.11)

PDA(scores) 0.03 (0.02)
FPCA 0.02 (0.02)

1

N(1, 1) 0.03 ≤ Ebayes ≤ 0.06
PDA(RSQ) 0.56 (0.06)

PDA(scores) 0.16 (0.05)
FPCA 0.16 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.54 (0.07)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

ΣCS, ρ = 0.1

0.1

N(1, 1) 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.33 (0.18)

PDA(scores) 0.16 (0.05)
FPCA 0.15 (0.05)

N(2, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.04 (0.04)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

N(1, 1) 0.04 ≤ Ebayes ≤ 0.08
PDA(RSQ) 0.54 (0.07)

PDA(scores) 0.16 (0.05)
FPCA 0.15 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.46 (0.08)

PDA(scores) 0.03 (0.02)
FPCA 0.02 (0.02)

ΣCS, ρ = 0.4

0.1

N(1, 1) 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.42 (0.16)

PDA(scores) 0.16 (0.05)
FPCA 0.15 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.13 (0.08)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

N(1, 1) 0.04 ≤ Ebayes ≤ 0.07
PDA(RSQ) 0.53 (0.09)

PDA(scores) 0.19 (0.06)
FPCA 0.17 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.55 (0.07)

PDA(scores) 0.03 (0.02)
FPCA 0.02 (0.02)

ΣAR(1), ρ = 0.1

0.1

N(1, 1) 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.26 (0.19)

PDA(scores) 0.16 (0.05)
FPCA 0.15 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.04 (0.03)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

N(1, 1) 0.04 ≤ Ebayes ≤ 0.08
PDA(RSQ) 0.52 (0.06)

PDA(scores) 0.15 (0.05)
FPCA 0.14 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.46 (0.07)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

ΣAR(1), ρ = 0.4

0.1

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.42 (0.12)

PDA(scores) 0.16 (0.05)
FPCA 0.15 (0.05)

N(2, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.03 (0.03)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

N(1, 1) 0.06 ≤ Ebayes ≤ 0.11
PDA(RSQ) 0.55 (0.06)

PDA(scores) 0.16 (0.05)
FPCA 0.15 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.49 (0.07)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

ΣAR(1), ρ = 0.7

0.1

N(1, 1) 0.00 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.42 (0.13)

PDA(scores) 0.15 (0.05)
FPCA 0.15 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.02 (0.02)

PDA(scores) 0.03 (0.02)
FPCA 0.02 (0.02)

1

N(1, 1) 0.07 ≤ Ebayes ≤ 0.13
PDA(RSQ) 0.47 (0.08)

PDA(scores) 0.15 (0.05)
FPCA 0.13 (0.05)

N(2, 1) 0.01 ≤ Ebayes ≤ 0.03
PDA(RSQ) 0.53 (0.07)

PDA(scores) 0.03 (0.02)
FPCA 0.02 (0.02)
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Table 5: Averaged error rate and its standard error in parenthesis for B-spline smoothed data of the simulation V
b µ Bayes Error Method CER

Σind

0.1

1 0.10 ≤ Ebayes ≤ 0.17
PDA(RSQ) 0.54 (0.07)

PDA(scores) 0.18 (0.06)
FPCA 0.17 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.54 (0.07)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

1 0.10 ≤ Ebayes ≤ 0.18
PDA(RSQ) 0.53 (0.07)

PDA(scores) 0.19 (0.06)
FPCA 0.16 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.51 (0.08)

PDA(scores) 0.02 (0.02)
FPCA 0.01 (0.01)

ΣCS, ρ = 0.1

0.1

1 0.11 ≤ Ebayes ≤ 0.19
PDA(RSQ) 0.55 (0.05)

PDA(scores) 0.18 (0.05)
FPCA 0.18 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.50 (0.09)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

1 0.10 ≤ Ebayes ≤ 0.17
PDA(RSQ) 0.52 (0.07)

PDA(scores) 0.18 (0.06)
FPCA 0.17 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.49 (0.07)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

ΣCS, ρ = 0.4

0.1

1 0.10 ≤ Ebayes ≤ 0.17
PDA(RSQ) 0.54 (0.07)

PDA(scores) 0.18 (0.06)
FPCA 0.18 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.56 (0.06)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

1 0.11 ≤ Ebayes ≤ 0.20
PDA(RSQ) 0.50 (0.08)

PDA(scores) 0.19 (0.06)
FPCA 0.17 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.54 (0.09)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

ΣAR(1), ρ = 0.1

0.1

1 0.13 ≤ Ebayes ≤ 0.23
PDA(RSQ) 0.51 (0.07)

PDA(scores) 0.19 (0.06)
FPCA 0.18 (0.05)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.55 (0.06)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

1 0.11 ≤ Ebayes ≤ 0.19
PDA(RSQ) 0.50 (0.07)

PDA(scores) 0.19 (0.06)
FPCA 0.18 (0.06)

2 0.01 ≤ Ebayes ≤ 0.02
PDA(RSQ) 0.56 (0.07)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

ΣAR(1), ρ = 0.4

0.1

1 0.11 ≤ Ebayes ≤ 0.19
PDA(RSQ) 0.56 (0.06)

PDA(scores) 0.18 (0.06)
FPCA 0.18 (0.05)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.45 (0.07)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

1 0.11 ≤ Ebayes ≤ 0.20
PDA(RSQ) 0.53 (0.07)

PDA(scores) 0.19 (0.06)
FPCA 0.18 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.49 (0.06)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

ΣAR(1), ρ = 0.7

0.1

1 0.10 ≤ Ebayes ≤ 0.18
PDA(RSQ) 0.55 (0.06)

PDA(scores) 0.16 (0.06)
FPCA 0.17 (0.06)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.52 (0.08)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)

1

1 0.11 ≤ Ebayes ≤ 0.20
PDA(RSQ) 0.50 (0.08)

PDA(scores) 0.18 (0.06)
FPCA 0.17 (0.05)

2 0.01 ≤ Ebayes ≤ 0.01
PDA(RSQ) 0.48 (0.08)

PDA(scores) 0.02 (0.02)
FPCA 0.02 (0.02)
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Figure 5: Temporal gene expression data of yeast cell cycle. Black lines indicate G1 phase, and gray lines indicate
non-G1 phases smoothed by B-spline method.

Table 6: Averaged classification error rate and its standard error in parenthesis for the gene expression data
Smoothing method Method CER

Without smooth

PDA(RSQ) 0.42 (0.04)
PDA(scores) 0.11 (0.03)

FPCA (num of PCs=1) 0.21 (0.03)
FPCA (num of PCs=2) 0.18 (0.02)
FPCA (num of PCs=3) 0.10 (0.02)
FPCA (num of PCs=4) 0.10 (0.02)
FPCA (num of PCs=5) 0.11 (0.02)

B-spline basis smooth

PDA(RSQ) 0.36 (0.04)
PDA(scores) 0.10 (0.03)

FPCA (num of PCs=1) 0.24 (0.03)
FPCA (num of PCs=2) 0.21 (0.03)
FPCA (num of PCs=3) 0.11 (0.02)
FPCA (num of PCs=4) 0.11 (0.02)
FPCA (num of PCs=5) 0.11 (0.02)

Fourier basis smooth

PDA(RSQ) 0.36 (0.04)
PDA(scores) 0.11 (0.02)

FPCA (num of PCs=1) 0.17 (0.03)
FPCA (num of PCs=2) 0.15 (0.03)
FPCA (num of PCs=3) 0.10 (0.02)
FPCA (num of PCs=4) 0.10 (0.02)
FPCA (num of PCs=5) 0.10 (0.02)

However, RSQ based method improves the classification performance compare to the two score
based methods in simulations I to III. The results from the score based methods are worse than the
random-guessing. Figure 3 presents the scatter plots of the PDA scores, (si1, si2), for simulations I and
V. We can clearly observe that the PDA scores are well-separated in simulation V when compared to
simulation I.

For the selected order m in PDA, we plot the histogram of m for each simulation (Figure 4).

4. Real data analysis

Leng and Müller (2006) classified yeast cell’s genes with respect to its relation to cell cycle type using
temporal gene expression data (http://genome-www.stanford.edu/cellcycle/data/rawdata/). Each gene
expression is measured in intervals of 7 minutes from 0 to 119 minutes, and we obtain 18 time points
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Figure 6: Misclassified curves from RSQ based method (top), PDA score based method (middle), and FPCA
score based method (bottom).

for each gene. In this paper, we used 611 gene expression data for classification which the relation
to cell cycle phases are known and all data points exist. Each gene expression data is labeled along
with its relation to cell cycle phases. Analogous to Leng and Müller (2006), we grouped five classes
(G1, S, S/G2, G2/M, and M/G1 phases) into two classes of G1 and non-G1 (S, S/G2, G2/M, and
M/G1 phases). Figure 5 presents the 611 gene expression data smoothed by B-spline method. Each
trajectory represents the expression of one specific gene.

For validation, we randomly divide the 611 curves into 489 training and 122 test curves, and we
repeat this process 100 times with different splits. The classification methods based on PDA and FPCA
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are applied on three cases: raw data, B-spline basis smoothed data, and Fourier basis smoothed data.
The number of basis and roughness penalty parameter, λ, are determined by GCV. The optimal order
of differential equation, m, in PDA is obtained from a 10-fold CV classification, and the number of
PCs in FPCA are set to one to five.

Table 6 summarize the results. Without smoothing technique, FPCA with three PCs works best in
classification two groups. Also, FPCA works well smoothed data using Fourier basis. PDA with RSQ
works poorly for all cases, while PDA with scores work well for smoothed cases.

We check misclassified genes for each method in one test data set. The curves are smoothed by B-
spline method. We can observe that the RSQ based method works poorly in classification two groups
compare to the other two methods (Figure 6). For the PDA score based method, seven G1 genes
misclassified as non-G1, and six non-G1 genes wrongly classified as G1. FPC score based method
provide similar results.

As we have shown in the results of Simulation IV and V in the Section 3, RSQ gives similar values
to the curves differ only by a constant or differ only by a phase shift. Figure 5 shows the two groups
have similar amplitude and differ by a phase shift. Therefore, RSQ based classification do not work
well, while two score based method classify the two groups well.

5. Concluding remarks

PDA is originally developed for the estimation of a differential operator from a functional data set. We
focus on the role of PDA as a classification methodology. Here, we propose two principal differential
analysis based classification methods. RSQ and score based classification methods are explained, and
their performances are compared with the functional principal component score based classification
method.

In all cases, there was no superior methodology. Each methodology had its pros and cons. PDA
score based classification method works similarly to the FPCA score based classification method,
while the RSQ based method shows a different tendency.

We expect that PDA based classification can be improved by considering principal differential
equations, such as non-homogeneous cases. Also, choosing optimal order m in PDA is a critical prob-
lem in the method and are left for future study.
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