• Title/Summary/Keyword: Function of University

Search Result 40,046, Processing Time 0.058 seconds

ON PERIODICIZING FUNCTIONS

  • Naito Toshiki;Shin Jong-Son
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.253-263
    • /
    • 2006
  • In this paper we introduce a new concept, a 'periodicizing' function for the linear differential equation with the periodic forcing function. Moreover, we construct this function, which is closely related with the solution of a difference equation and an indefinite sum. Using this function, we can obtain a representation of solutions from which we see immediately the asymptotic behavior of the solutions.

FENCHEL DUALITY THEOREM IN MULTIOBJECTIVE PROGRAMMING PROBLEMS WITH SET FUNCTIONS

  • Liu, Sanming;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.139-152
    • /
    • 2003
  • In this paper, we characterize a vector-valued convex set function by its epigraph. The concepts of a vector-valued set function and a vector-valued concave set function we given respectively. The definitions of the conjugate functions for a vector-valued convex set function and a vector-valued concave set function are introduced. Then a Fenchel duality theorem in multiobjective programming problem with set functions is derived.

The Approximation for the Auxiliary Renewal Function (보조재생함수에 대한 근사)

  • Bae, Jong-Ho;Kim, Sung-Gon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.333-343
    • /
    • 2007
  • The auxiliary renewal function has an important role in analyzng queues in which the either of the inter-arrival time and the service time of customers is not exponential. As like the renewal function, the auxiliary renewal function is hard to compute although it can be defined theoretically. In this paper, we suggest two approximations for auxiliary renewal function and compare the two with the true value of auxiliary renewal function which can be computed in some special cases.

The Weight Function in the Bounded Influence Regression Quantile Estimator for the AR(1) Model with Additive Outliers

  • Jung Byoung Cheol;Han Sang Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.169-179
    • /
    • 2005
  • In this study, we investigate the effects of the weight function in the bounded influence regression quantile (BIRQ) estimator for the AR(l) model with additive outliers. In order to down-weight the outliers of X -axis, the Mallows' (1973) weight function has been commonly used in the BIRQ estimator. However, in our Monte Carlo study, the BIRQ estimator using the Tukey's bisquare weight function shows less MSE and bias than that of using the Mallows' weight function or Huber's weight function. Thus, the use of the Tukey's weight function is recommended in the BIRQ estimator for our model.

Realization of n-th Order Voltage Transfer Function Using a Single Operational Transresistance Amplifier

  • Kilinc, Selcuk;Cam, Ugur
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.647-650
    • /
    • 2005
  • A new configuration to realize the most general n-th order voltage transfer function is proposed. It employs only one operational transresistance amplifier (OTRA) as the active element. In the synthesis of the transfer function, the RC:-RC decomposition technique is used. To the best of author's knowledge, this is the first topology to be used in the realization of n-th order transfer function employing single OTRA.

  • PDF

CERTAIN REDUCTION AND TRANSFORMATION FORMULAS FOR THE KAMPÉ DE FÉRIET FUNCTION

  • Rakha, Medhat A.;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.473-496
    • /
    • 2022
  • In 2014, Liu and Wang established a large number of interesting reduction, transformation and summation formulas for the Kampé de Fériet function. Inspired by the work, we aim to find further several transformation and reduction formulas for the Kampé de Fériet function. Theses formulas are mainly based on the formulas given by Liu and Wang [33].