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TWO NEW PROOFS OF THE COMPLETE MONOTONICITY
OF A FUNCTION INVOLVING THE PSI FUNCTION

Bai-Ni Guo and Feng Qi

Abstract. In the present paper, we give two new proofs for the necessary
and sufficient condition α ≤ 1 such that the function xα[lnx − ψ(x)] is
completely monotonic on (0,∞).

1. Introduction

Recall [20] that a function f is said to be completely monotonic on an interval
I if f has derivatives of all orders on I and

(1) (−1)nf (n)(x) ≥ 0

for all x ∈ I and n ∈ N ∪ {0}. The well-known Bernstein’s Theorem in [20,
p. 160, Theorem 12a] states that a function f on [0,∞) is completely monotonic
if and only if there exists a bounded and non-decreasing function α(t) such that

(2) f(x) =
∫ ∞

0

e−xt dα(t)

converges for x ∈ [0,∞).
Recall also [4, 5, 8, 16, 18] that a positive function f is said to be logarith-

mically completely monotonic on an interval I if f has derivatives of all orders
on I and

(3) (−1)n[ln f(x)](n) ≥ 0

for all x ∈ I and n ∈ N.
It was proved explicitly in [5, 16, 18] and other articles that a logarithmically

completely monotonic function must be completely monotonic. For more in-
formation on the logarithmically completely monotonic functions, please refer
to [5, 10, 19] and related references therein.
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It is well-known that the Euler gamma function is defined by

(4) Γ(z) =
∫ ∞

0

tz−1e−t dt

for <(z) > 0. The logarithmic derivative of Γ(z), denoted by ψ(z) = Γ′(z)
Γ(z) ,

is called the psi or digamma function, and ψ(k) for k ∈ N are called the
polygamma functions.

In [3], the function

(5) θ(x) = x[lnx− ψ(x)]

was proved to be decreasing and convex on (0,∞), with two limits

(6) lim
x→0+

θ(x) = 1 and lim
x→∞

θ(x) =
1
2

being presented complicatedly.
In [2, p. 374], it was pointed out that the limits in (6) can follow immediately

from the representations

θ(x) = x lnx− xψ(x+ 1) + 1 and θ(x) =
1
2

+
1

12x
− τ

120x3

for x > 0 and τ ∈ (0, 1).
From (6) and the decreasing monotonicity of θ(x), the inequality

(7)
1
2x

< lnx− ψ(x) <
1
x

for x > 0 is concluded. This extends a result in [13], which says that the
inequality (7) is valid for x > 1. Refinements and generalizations of (7) were
given in [7, 15, 17] and related references therein. For more information, please
refer to [14] and related references therein.

In [11], by employing the monotonicity of θ(x), it was recovered simply that
the double inequality

(8)
xx−γ

ex−1
< Γ(x) <

xx−1/2

ex−1

holds for x > 1, the constants γ and 1
2 are the best possible, the left-hand side

inequality in (8) holds also for 0 < x < 1, but the right-hand side inequality
in (8) reverses, where γ is Euler-Mascheroni’s constant. Furthermore, by virtue
of the decreasing monotonicity and convexity of θ(x), it was showed in [11] that
the function

(9) h(x) =
exΓ(x)
xx−θ(x)

on (0,∞) has a unique maximum e at x = 1, with two limits

(10) lim
x→0+

h(x) = 1 and lim
x→∞

h(x) =
√

2π .
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Consequently, three sharp inequalities

(11)
xx−θ(x)

ex
< Γ(x) ≤ xx−θ(x)

ex−1

on (0, 1],

(12)
√

2π xx−θ(x)

ex
< Γ(x) ≤ xx−θ(x)

ex−1

on [1,∞), and

(13) I(x, y) <
{
xθ(x)Γ(x)
yθ(y)Γ(y)

}1/(x−y)

for x ≥ 1 and y ≥ 1 with x 6= y, where

(14) I(a, b) =
1
e

(
bb

aa

)1/(b−a)

for a > 0 and b > 0 with a 6= b is called the identric or exponential mean, are
deduced directly. If 0 < x ≤ 1 and 0 < y ≤ 1 with x 6= y, the inequality (13)
is reversed.

In [2, pp. 374–375, Theorem 1], by using the well-known Binet’s formula and
complicated calculating techniques for integrals, the monotonicity and convex-
ity of θ(x) was extended to the complete monotonicity: For real number α, the
function

(15) θα(x) = xα[lnx− ψ(x)]

is completely monotonic on (0,∞) if and only if α ≤ 1.
The aim of this paper is to give two new proofs of the complete monotonicity

of the function θα(x), which can be restated as the following Theorem 1, since
this function θα(x) has many meaningful applications as stated above.

Theorem 1. For real number α, the function θα(x) defined by (15) is com-
pletely monotonic on (0,∞) if and only if α ≤ 1, with two limits

(16) lim
x→0+

θ1(x) = 1, lim
x→∞

θ1(x) =
1
2

and, for α < 1,

(17) lim
x→0+

θα(x) = ∞, lim
x→∞

θα(x) = 0.

Remark 1. It is easy to obtain that

(18) θ′1(x) = 1 + lnx− ψ(x)− xψ′(x)

and

(19) θ
(k+1)
1 (x) =

(−1)k+1(k − 1)!
xk

− (k + 1)ψ(k)(x)− xψ(k+1)(x)
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for k ∈ N. From Theorem 1 and the fact that a completely monotonic function
which is non-identically zero cannot vanish at any point on (0,∞) (see [19,
p. 82]), it is derived that

(−1)iθ
(i)
1 (x) > 0

for i ∈ {0}∪N on (0,∞), which are equivalent to the double inequality (7) and
the following inequalities on (0,∞):

ψ(x) + xψ′(x) > 1 + lnx,(20)

(−1)k+1
[
(k + 1)ψ(k)(x) + xψ(k+1)(x)

]
<

(k − 1)!
xk

, k ∈ N.(21)

The inequality (20) may be rewritten as

(22) ψ(x)− lnx > 1− xψ′(x), x ∈ (0,∞).

Substituting the right-hand side inequality in (29) for k = 1 yields the right-
hand side inequality in (7). This shows that the inequality (20), equivalently,
(22), is better than the right-hand side inequality in (7).

Furthermore, rearranging the inequality (21) and using the right-hand side
inequality in (29) lead to

(−1)k+1ψ(k)(x) <
1

k + 1

[
(k − 1)!
xk

+ (−1)k+2xψ(k+1)(x)
]

<
1

k + 1

{
(k − 1)!
xk

+ x

(
k!
xk+1

+
(k + 1)!
xk+2

)}

=
(k − 1)!
xk

+
k!
xk+1

, k ∈ N.

This implies that the inequality (21) is stronger than the right-hand side in-
equality in (29).

2. Lemmas

In order to prove Theorem 1, the following lemmas are needed.

Lemma 1 ([1]). For i ∈ N, x > 0, a > 0 and b > 0,

ψ(i−1)(x+ 1) = ψ(i−1)(x) +
(−1)i−1(i− 1)!

xi
,(23)

ln
b

a
=

∫ ∞

0

e−at − e−bt

t
dt,(24)

ψ(i)(x) = (−1)i+1

∫ ∞

0

tie−xt

1− e−t
dt,(25)

ψ(x)− lnx+
1
x

=
∫ ∞

0

(
1
t
− 1
et − 1

)
e−xt dt.(26)
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Lemma 2 ([17]). For x > 0,

1
2x

− 1
12x2

< ψ(x+ 1)− lnx <
1
2x
,(27)

1
2x2

− 1
6x3

<
1
x
− ψ′(x+ 1) <

1
2x2

− 1
6x3

+
1

30x5
.(28)

Lemma 3. Inequalities

(29)
(k − 1)!
xk

+
k!

2xk+1
< (−1)k+1ψ(k)(x) <

(k − 1)!
xk

+
k!
xk+1

hold on (0,∞) for k ∈ N.

Proof. In [15, Lemma 1.3], the function ψ(x) − lnx + α
x was proved to be

completely monotonic on (0,∞), i.e.,

(30) (−1)i
[
ψ(x)− lnx+

α

x

](i)

≥ 0

for i ≥ 0, if and only if α ≥ 1, so is its negative, i.e., the inequality (30) is
reversed, if and only if α ≤ 1

2 . In [6, Theorem 2], the function exΓ(x)
xx−α was

proved to be logarithmically completely monotonic on (0,∞), i.e.,

(31) (−1)k

[
ln
exΓ(x)
xx−α

](k)

≥ 0

for k ∈ N, if and only if α ≥ 1, so is its reciprocal, i.e., the inequality (31) is
reversed, if and only if α ≤ 1

2 . Considering the fact [19, p. 82] that a completely
monotonic function which is non-identically zero cannot vanish at any point on
(0,∞) and rearranging either (30) or (31) leads to the double inequalities (7)
and (29). Lemma 3 is proved. ¤

Lemma 4. If f(x) is a function defined in an infinite interval I such that
f(x) − f(x + ε) > 0 and limx→∞ f(x) = δ for x ∈ I and some ε > 0, then
f(x) > δ in I.

Proof. By induction, for any x ∈ I,

f(x) > f(x+ ε) > f(x+ 2ε) > · · · > f(x+ kε) → δ

as k →∞. The proof of Lemma 4 is complete. ¤

Remark 2. Lemma 4 is simple, but it is very effectual in dealing with some prob-
lems concerning (logarithmically) completely monotonic properties of functions
involving the gamma, psi, polygamma functions.
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3. The first proof of Theorem 1

Straightforward computation gives

θ1(x+ 1)− θ1(x) = (x+ 1) ln(x+ 1)− x lnx+ x[ψ(x)− ψ(x+ 1)]− ψ(x+ 1)

= (x+ 1) ln(x+ 1)− x lnx− ψ(x+ 1)− 1

and

[θ1(x+ 1)− θ1(x)]′ = ln(x+ 1)− lnx− ψ′(x+ 1)

=
∫ ∞

0

[
1− e−t

t
− te−t

1− e−t

]
e−xt dt

=
∫ ∞

0

e−t + et − t2 − 2
t(et − 1)

e−xt dt

> 0

by using formulas (23), (24) and (25). Hence,

(−1)i[θ1(x+ 1)− θ1(x)](i) =
[
(−1)iθ

(i)
1 (x+ 1)]− [(−1)iθ

(i)
1 (x)

]
< 0

on (0,∞) for i ∈ N.
Using the inequality (27) yields

(x+ 1) ln
(

1 +
1
x

)
− 1

2x
− 1 < θ1(x+ 1)− θ1(x)

< (x+ 1) ln
(

1 +
1
x

)
− 1

2x
+

1
12x2

− 1,

which implies that limx→∞[θ1(x + 1) − θ1(x)] = 0. Since the function θ1(x +
1)− θ1(x) is increasing on (0,∞), it is obtained that θ1(x+ 1)− θ1(x) < 0 on
(0,∞).

Utilizing (23) and (27) leads easily to limx→∞ θ1(x) = 1
2 .

Utilization of (18) and (19) and combination of (23), (27) and (28) yield
that limx→∞ θ′1(x) = 0. The inequality (29) means that limx→∞ θ

(i)
1 (x) = 0 for

i ≥ 2.
By the above argument and Lemma 4, it is concluded that (−1)kθ

(k)
1 (x) ≥

0 on (0,∞) for k ≥ 0, which means that the function θ1(x) is completely
monotonic on (0,∞) with limx→∞ θ1(x) = 1

2 .
The validity of the limit limx→0+ θ1(x) = 1 follows from the formula (26).
It is clear that θα(x) = xα−1θ1(x) and xα−1 is also completely monotonic

on (0,∞) for α < 1. Since the product of any finite completely monotonic
functions on an interval I is also completely monotonic on I, the function
θα(x) is completely monotonic on (0,∞) for α < 1.

Conversely, if the function θα(x) is completely monotonic on (0,∞), then
θα(x) is decreasing and positive on (0,∞). From the formula (23) and the
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inequality (27), it follows that

(32)
1
2x

+
1

12x2
> lnx− ψ(x) >

1
2x

and

(33)
1

2x1−α
+

1
12x2−α

> xα[lnx− ψ(x)] >
1

2x1−α

for x > 0, which means that xα[lnx − ψ(x)] tends to ∞ as x → ∞ if α > 1.
This contradicts with the decreasingly monotonic property of θα(x) on (0,∞).
Hence, the necessary condition α ≤ 1 follows.

It is obvious that the inequality (33) implies the two limits in (17). The
proof of Theorem 1 is complete.

4. The second proof of Theorem 1

Let

(34) h(t) =
1
t
− 1
et − 1

=
et − 1− t

t(et − 1)

for t 6= 0 and h(0) = 1
2 . Integration by part in (26) yields

ψ(x)− lnx+
1
x

= − 1
x

{[
h(t)e−xt

]∣∣t=∞
t=0

−
∫ ∞

0

h′(t)e−xt dt
}

=
1
2x

+
1
x

∫ ∞

0

h′(t)e−xt dt.
(35)

Multiplying on all sides of (35) by x and rearranging gives

(36) x[lnx− ψ(x)] =
1
2
−

∫ ∞

0

h′(t)e−xt dt.

In [9, 12, 21] and related references therein, the function h(t) was shown to
be decreasing on (−∞,∞), concave on (−∞, 0) and convex on (0,∞). This
means that the function θ1(x) is completely monotonic on (0,∞) and that
the second limit in (16) follows. This means that if α > 1, then the function
θα(x) = xα−1θ1(x) tends to infinity for x tending to infinity and therefore it
cannot be completely monotonic, that is, the condition α ≤ 1 is necessary. The
second proof of Theorem 1 is complete.

Remark 3. The second proof of Theorem 1 can also be demonstrated as follows.
It is easy to see that

(37)
1
x

=
∫ ∞

0

e−xu du, x > 0.

Substituting it into (26) gives

(38) lnx− ψ(x) =
∫ ∞

0

(
1

1− e−t
− 1
t

)
e−xt dt ,

∫ ∞

0

ρ(t)e−xt dt.
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An integration by part and a multiplication by x yield

(39) x[lnx− ψ(x)] =
1
2

+
∫ ∞

0

ρ′(t)e−xt dt,

where

(40) ρ′(t) =
1
t2
− e−t

(1− e−t)2
=

2e−t

t2(1− e−t)2

(
et + e−t

2
− 1− t2

2

)
.

Making use of the power series expansion of et at t = 0 reveals easily that ρ′(t)
is positive on (0,∞). So the function θ1(x) is completely monotonic with the
limit 1

2 at infinity.
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