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A DETERMINANT FORMULA FOR CONGRUENT ZETA

FUNCTIONS OF REAL ABELIAN FUNCTION FIELDS

Jaehyun Ahn and Hwanyup Jung

Abstract. In this paper we give a determinant formula for congruent
zeta functions of real Abelian function fields. We also give some examples
of congruent zeta functions when the conductor of real Abelian function

field is monic irreducible.

1. Introduction

Let k = Fq(T ) be the rational function field over the finite field Fq and
A = Fq[T ]. Let ∞ be the place of k associated to 1/T , which is called the
infinite one of k. Write A+ = {1 ̸= M ∈ A : M is monic} and A+

irr = {P ∈
A+ : P is irreducible}. For any M ∈ A+, write KM for the Mth cyclotomic
function field and K+

M for the maximal real subfield of KM . In this paper, by
an Abelian function field, we always mean a finite Abelian extension F of k
which is contained in a cyclotyomic function field KM , and F is said to be real
if ∞ splits completely in F . Let N = N(F ) ∈ A+ be the conductor of F , that
is, KN is the smallest cyclotomic function field containing F . For such a field
F , there exists a polynomial PF (X) ∈ Z[X] such that

ζ(s, F ) =
PF (q

−s)

(1− q−s)(1− q1−s)
,

where ζ(s, F ) is the congruence zeta function of F , and PF (1) is equal to the
divisor class number hF of F . In recent paper [5], Shiomi has expressed the
polynomial PK+

M
(X) as determinant of matrixDK+

M
(X) with entries in Z[X] up

to some polynomial JK+
M
(X). Since hK+

M
= PK+

M
(1), this determinant formula

for PK+
M
(X) can be regarded as generalization of that for class number h+

KM

([1], [3]).
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The aim of this paper is to give a determinant formula for the polynomial
PF (X) for arbitrary real Abelian function field F . We also give some examples
of the polynomials PF (X) when F is a real Abelian function field of monic
irreducible conductor and q = 3.

2. Zeta and L-functions

Let ζ(s, F ) be the congruence zeta function of a real Abelian function field
F given by

ζ(s, F ) =
∏
p

(
1− 1

Nps

)−1

,

where p runs over all primes of F . It is well known that there exists a polynomial
PF (X) ∈ Z[X] of degree 2g, where g is the genus of F , such that

(2.1) ζ(s, F ) =
PF (q

−s)

(1− q−s)(1− q1−s)
.

Moreover, the polynomial PF (X) satisfies PF (0) = 1 and PF (1) = hF , where
hF is the divisor class number of F . Let OF be the integral closure of A in F
and ζ(s,OF ) be the zeta function of OF given by

ζ(s,OF ) =
∏
p

(
1− 1

Nps

)−1

,

where p runs over all prime ideals of OF . Since ∞ splits completely in F , the
functions ζ(s, F ) and ζ(s,OF ) satisfy the following equality

(2.2) ζ(s, F ) = ζ(s,OF )(1− q−s)−[F :k].

Let XF be the group of primitive Dirichlet characters of A associated to F .
For χ ∈ XF , let L(s, χ) be the L-function associated to χ given by

L(s, χ) =
∏

P∈A+
irr

(
1− χ(P )q−s degP

)−1
.

Then we have

(2.3) ζ(s,OF ) =
∏

χ∈XF

L(s, χ).

Let χ0 ∈ XF denote the trivial character. Since L(s, χ0) = (1− q1−s)−1, from
(2.1), (2.2) and (2.3), we get∏

χ0 ̸=χ∈XF

L(s, χ) = (1− q−s)[F :k]−1PF (q
−s).(2.4)

For any χ ∈ XF , let Fχ ∈ A+ be the conductor of χ and χ̃ = χ ◦ πχ, where
πχ : (A/NA)∗ → (A/FχA)∗ is the canonical homomorphism. Then we have

(2.5) L(s, χ̃) = L(s, χ)
∏

Q∈A+
irr, Q|N

(
1− χ(Q)q−s degQ

)
.
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Thus, by (2.4) and (2.5), we have

(2.6)
∏

χ0 ̸=χ∈XF

L(s, χ̃) = (1− q−s)[F :k]−1PF (q
−s)JF (q

−s),

where JF (X) is the polynomial given by

JF (X) =
∏

χ0 ̸=χ∈XF

∏
Q∈A+

irr, Q|N

(
1− χ(Q)XdegQ

)
.

Finally we give some remarks on the polynomial JF (X). They satisfy the
following equality (cf. [5, Proposition 3.1])

JF (X) =
∏

Q∈A+
irr, Q|N

(1−XfQ degQ)gQ

1−XdegQ
,

where fQ is the residue class degree of Q in F/k and gQ is the number of primes
over Q in F . Hence we see that JF (X) ∈ Z[X] and in particular, JF (X) = 1 if
N is a power of some Q ∈ A+

irr.

3. A determinant formula for PF (X)

Let F be a real Abelian function field with conductor N . Let

RN = (A/NA)∗/F∗
q .

For α ∈ (A/NA)∗, there exists a unique polynomial Aα ∈ A such that degAα <
degN and Aα + NA = α. Write sgnN (α) ∈ F∗

q for the leading coefficient of

Aα, degN (α) = degAα and cλ(α) = λ−1(sgnN (α)) for any character λ of F∗
q .

We can easily see that degN is a function over RN . Let H be the subgroup
of RN which is isomorphic to Gal(K+

N/F ) under the canonical isomorphism

RN
∼= Gal(K+

N/k). For each σ ∈ Gal(F/k), choose βσ ∈ (A/NA)∗ which cor-
responds to σ under (A/NA)∗ → RN → RN/H ∼= Gal(F/k). Choose a subset
ΩH ⊆ (A/NA)∗ which are mapped bijectively ontoH under the homomorphism
(A/NA)∗ → RN . For each σ ∈ Gal(F/k), define a polynomial fσ(X) ∈ Z[X]
by

fσ(X) :=
∑

α∈ΩH

XdegN (βσα).

Since {βσα : σ ∈ Gal(F/k), α ∈ ΩH} forms a complete system of representa-
tives of RN , we can see easily that fσ(X) is independent of the choices of ΩH
and βσ. Define a matrix DF (X) by

DF (X) :=

(
fστ−1(X)− fσ(X)

1−X

)
1̸=σ,τ∈Gal(F+/k)

.

Theorem 3.1. With notations as above, we have

(3.1) detDF (X) = PF (X)JF (X).
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Proof. For χ0 ̸= χ ∈ XF , as in the proof of [5, Theorem 3.1], we have

L(s, χ̃) =
∑

σ∈Gal(F/k)

∑
α∈ΩH

χ̃(βσα)q
−s degN (βσα)

=
∑

σ∈Gal(F/k)

χ̃(βσ)
( ∑

α∈ΩH

q−s degN (βσα)
)
=

∑
σ∈Gal(F/k)

χ̃(βσ)fσ(q
−s).

Thus, by the Frobenius determinant formula,∏
χ0 ̸=χ∈XF

L(s, χ̃) =
∏

χ0 ̸=χ∈XF

∑
σ∈Gal(F/k)

χ̃(βσ)fσ(q
−s)

= det
(
fστ−1(q−s)− fσ(q

−s)
)
1̸=σ,τ∈Gal(F/k)

.(3.2)

So, by (2.6), we get

detDF (q
−s) = PF (q

−s) · JF (q−s).

Putting X = q−s, we get the desired result. □

Now we assume that F has a monic irreducible conductor P ∈ A+
irr of degree

d. Fix a primitive root Q of P with degQ < d. For each integer i ≥ 0, let Qi be

the unique polynomial such that Qi ≡ Qi mod P and degQi < d. Let r = qd−1
q−1

and n = [F : k]. Under the isomorphism (A/PA)∗ → Gal(KP /k), A + PA 7→
σA, we have Gal(KP /K

+
P ) = {σQri : 0 ≤ i < q − 1} and Gal(KP /F ) = {σQni :

0 ≤ i < qd−1
n }. Hence we may take ΩH = {Qni : 0 ≤ i < r

n}. For each integer
i ≥ 0, let σi be the restriction of σQi to F . Then Gal(F/k) = {σi : 0 ≤ i < n}.
For each 0 ≤ i < n, we may take βσi = Qi, so

fσi(X) =

r
n−1∑
h=0

XdegP (QiQnh) =

r
n−1∑
h=0

XdegQi+nh .

Note that σ−1
j = σn−j for 0 ≤ j < n. Then, for each 1 ≤ i, j < n, we have

fij(X) := fσiσ
−1
j

(X)− fσi(X) =

r
n−1∑
h=0

XdegQi+n−j+nh −XdegQi+nh .

Since F has a monic irreducible conductor P , JF (X) = 1, so we get the follow-
ing.

Proposition 3.2. Let F be a real Abelian function field with a monic irre-
ducible conductor P . For each 1 ≤ i, j < n = [F : k], let fij(X) be as above.
Then we have

DF (X) =

(
fij(X)

1−X

)
1≤i,j<n

and PF (X) = detDF (X).
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Table 1. PF (X) for the subfield F of KP with [F : k] = 13

P PF (X) h(F )

T 3 + 2T + 1 1+9X+42X2+144X3+399X4+900X5+1691X6

+2700X7+3591X8+3888X9+3402X10+2187X11+729X12 39

T 3 + 2T + 2 1+9X+42X2+144X3+399X4+900X5+1691X6

+2700X7+3591X8+3888X9+3402X10+2187X11+729X12 39

T 3 + T 2 + 2 1+9X+42X2+131X3+308X4+601X5+1067X6

+1803X7+2772X8+3537X9+3402X10+2187X11+729X12 53 · 313

T 3 + 2T 2 + 1 1+9X+42X2+131X3+308X4+601X5+1067X6

+1803X7+2772X8+3537X9+3402X10+2187X11+729X12 53 · 313

4. Examples

Let F be a real Abelian function field with a monic irreducible conductor P .
In this section, we give some examples of the congruence zeta function PF (X)
of F using Proposition 3.2. As the k-isomorphism T 7→ T + α with α ∈ F∗

q

sends a monic irreducible polynomial to another one, it suffices to consider only
the monic irreducible polynomials up to these k-isomorphisms.

Example 4.1. Assume q = 3. There are four monic irreducible polynomials
T 3 + 2T + 1, T 3 + 2T + 2, T 3 + T 2 + 2 and T 3 + 2T 2 + 1 of degree 3 up to
the above k-isomorphisms. Since [KP : k] = 26, there is only one non-trivial
real subfield F of KP , which is of degree 13 over k. The table of PF (X) and
h(F ) = PF (1) for these polynomials are given in Table 1.

Example 4.2. Assume q = 3. There are six monic irreducible polynomials of
degree 4 up to the above k-isomorphisms. We only give the table for T 4+T +2
in Table 2. Note that for each positive divisor of 40 there is only one real
subfield F of KP for the same degree. In the case [F : k] = 8, we have the
matrix DF (X) as follows;

X2 + 1 −X2 +X 2X2 −X −X2 X2 +X X2

−2X2 −X X + 1 X2 +X 2X2 −X −X2 −X X 2X2 +X
−X2 −X −3X2 2X2 +X + 1 X2 X2 −X 0 X2 +X

0 −2X2 −X2 2X2 + 1 0 2X2 X2

−X2 −X2 +X 0 −X2 −X X2 + 1 X2 +X 3X2

−X2 −X −2X2 +X X2 +X −X −2X2 −X 2X2 +X + 1 2X2 +X
X2 −X −2X2 X X2 −X2 −X −X2 3X2 +X + 1


.

In Table 2, f1(X) is given by

1 + 16X + 133X2 + 760X3 + 3326X4 + 11764X5 + · · ·
+ 17175641679X36 + 6198727824X37 + 1162261467X38

and f2(X) is given by

1 + 36X + 663X2 + 8320X3 + 79951X4 + 626884X5 + · · ·
+ 298538229605731251669X76 + 48630661836227715204X77

+ 4052555153018976267X78.

One can see that our data coincide with one in [2].
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Table 2. PF (X) for the real subfield F of KP with P =
T 4 + T + 2

[F : k] PF (X) h(F )
2 1 + 3X2 22

4 1 + 4X + 11X2 + 24X3 + 33X4 + 36X5 + 27X6 23 · 17
5 1 +X − 2X2 − 5X3 +X4 − 15X5 − 18X6 + 27X7 + 81X8 71

8 1+4X+19X2+56X3+153X4+356X5+715X6+1344X7+2145X8

+3204X9+4131X10+4536X11+4617X12+2916X13+2187X14 24 · 17 · 97
10 1+6X+18X2+40X3+71X4+70X5−43X6−358X7−1064X8−2220X9−3192X10

−3222X11−1161X12+5670X13+17253X14+29160X15+39366X16+39366X17+19683X18 22 · 71 · 491
20 f1(X) 23·112·17

·71·491·541
40 f2(X) 24·112·17·41·71·97

·491·541·881·1564361
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