• Title/Summary/Keyword: Fuel Injection control

Search Result 333, Processing Time 0.032 seconds

A Study on the Effect of Cycle Variation on Scavenging pressure in 2-Stroke Diesel Engine (2행정 디젤엔진의 소기압력이 사이클변동에 미치는 영향에 관한 연구)

  • Yoon, Chang-Sik;Kim, Chi-Won;Kim, Gi-Bok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.154-159
    • /
    • 2016
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption, and exhaust emission control at automotive engine In this study, it is designed and used the test bed which is installed with fuel injector controller. In addition to equipped engine using CRDI by controlling the injection timing with modulator, it has tested and analyzed the engine cycle variation characteristics, as it is varied that they are the operating parameters: fuel injected quantity, injection timing, engine speed and scavenging pressure.

Observer Design of an Injector for Fuel Control in DI Diesel Engines with an Electronically Controlled Injector (전자제어식 직접분사 디젤엔진의 연료제어를 위한 인젝터 관측기 설계)

  • Kim Sunwoo;Lee Kangyoon;Chung Namhoon;Sunwoo Myoungho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1305-1311
    • /
    • 2004
  • This study presents a mathematical model and a sliding mode observer of the injection system for common rail diesel engines. The injector model consists of three subsystems: the actuator subsystem, the mechanical subsystem, and the hydraulic subsystem. In the actuator subsystem, the constitutive relations of piezoelectricity are used to model the actuator made up of piezoelectric material. Based on the proposed model, the observer estimates the injection rate and injection timing, and can play a vital role of sensorless control of fuel injection in the near future. The sliding mode theory is applied to the observer design in order to overcome model uncertainties. The injector model and observer are evaluated through the injector experiments. The simulation results of the injector model are in good agreement with the experimental data. The sliding mode observer can effectively estimate the injection timing and the injection rate of the injector.

Effects of Ambient Conditions on the Atomization of Direct Injection Injector (분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향)

  • Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

Study on Friction Characteristics of Pressure Control Valve for Ship Engine (선박용 압력조절밸브의 마찰 특성에 관한 연구)

  • Choi, Won-Sik;Park, In-Soo;Kang, Chang-Won;Sandi, Pratama Pandu;Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.185-192
    • /
    • 2016
  • Low operational cost and high efficiency is absolute requirements in the mass production of the ship engine. Increasing the performance of the fuel injection system in the diesel engine is one kind of solution to improve the efficiency. Modern diesel engines are using electronic control module as the main controller in the fuel injection control system, however the mechanical system still involved in the modern control system. In modern ship engine, a control valve was used in injection fuel to regulate the flow of the fuel. High pressure and friction are intensively occur within this part, therefore high wear resist and low friction coefficient material including fine lubricating are needed. This study is to figure out the wear resist material and proper lubricant in the control valve fuel injection. The experiment has been tested using pin on disk in several treatments those are used various lubricants and non-lubricant condition. Two kinds of lubricant were used in this experiment such as INDERIN AW-32 and paraffin oil. INDERIN AW-32 has a better result compared to non-lubricant condition, which are 20% performance increases than non-lubricant condition. SCM 440 was providing small friction coefficient in the lower velocity. The friction coefficient was constantly maintains at 0.1 m/s of velocity or above respectively with the increment of the loads. Using INDERIN AW-32 and paraffin oil the lowest friction coefficient occurred at the lower load, and increases side by side with the increment of loads.

A Design on Model Following ${\mu}$-Synthesis Control System for Optimal Fuel-Injection of Diesel Engine Using Genetic Algorithms (유전 알고리즘을 이용한 디젤 엔진의 최적 연료주입 모델 추종형 ${\mu}$-합성 제어 시스템의 설계)

  • Kim, Dong-Wan;Hwang, Hyun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.587-589
    • /
    • 1997
  • In this paper we design the model following ${\mu}$-synthesis control system for optimal fuel-injection of diesel engine using genetic algorithms. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithms with reference model to the optimal determination of weighting functions that are given by D-K iteration method which can design ${\mu}$-synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain selected adequately. The effectiveness of this ${\mu}$-synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

A Study on the Development of an Electronic Control System for Optimal Start and Idle Speed Control in Gasoline Engines (기솔린 기관에서 최적의 시동 및 공회전 속도제어를 위한 전자 제어장치 개발에 관한 연구)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1148-1160
    • /
    • 2001
  • An electronic control system of the automobile engine for optimal start and idle speed control has been developed. This system employs the microcoputer-based electronic control unit and crank angle sensor for precise control on fuel injection, ignition timing, and idle speed more quickly and accurately at the start and idling. Consequently, the number of misfire can be reduced during been affected by air flow rate, idle quality(roughness), spark timing, fuel injection, water temperature, and load, Thus, this electronic control system strivers to reach the optimal idle operating point, defined the lowest idle speed(fuel economy) and idle quality(roughness), under any engine operating conditions.

  • PDF

Experimental Study on Natural Gas Conversion Vehicle(2) - Evaluation of Injection System (천연가스 개조 승용차에 대한 실험적 연구(2) - 분사 시스템 평가)

  • Kim, Hyung-Gu;Kwon, Suntae;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.444-453
    • /
    • 2015
  • In the previous study, several problems were observed in a NG conversion vehicle, which were fail of air-fuel ratio closed loop control, aggravated fuel economy, increased harmful emission and declined roadability. It was provisionally supposed that the mismatch of injection system with the engine caused these performance deterioration. In this context, the characteristics of fuel injection system of commercial conversion kit for NG were investigated experimentally varying the engine speed, fuel rail pressure and volume. The results are as follows; The injection quantity decreases as the engine speed increases due to the extremely small rail volume of the presenting system and flow rate of No. 2 injector are always lower than that of the other ones regardless of the speed under the dynamic operation condition. Furthermore the existing system does not meet the required fuel quantity for the normal engine operation over 3000 RPM. On the other hands, the large rail volume systems ease and/or eliminate the difference of injection quantity between the injectors according to the speed variation, however, these systems decrease injection flow rate and still cannot supply sufficient fuel. Finally, suitable combination of the higher rail pressure and the larger rail volume might be a solution about these problems.

A Study on the Behavior Characteristics of Diesel Spray by Using a High Pressure Injection System with Common Rail Apparatus

  • Yeom, Jeong-Kuk;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1371-1379
    • /
    • 2003
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 22 MPa to 112 MPa using a high pressure injection system (ECD-U2). Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

A Study on Optimal Design of Direct Needle-driven Piezo Injector for Accomplishing Injection Pressure of 1800 bar (분사압력 1800 bar 실현을 위한 직접 니들구동방식 피에조 인젝터 설계 최적화 연구)

  • Han, Sangik;Kim, Juhwan;Ji, Hyungsun;Go, Junchae;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2016
  • The advantages of the common rail fuel injection system architecture have been recognized since the development of the diesel engine. In common rail systems, a high-pressure pump stores a reservoir of fuel at high pressure up to and above 2000 bar. And solenoid or piezoelectric valves make possible fine electronic control over the fuel injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomization. In this study, the direct needle-driven piezo injector was investigated for accomplishing injection pressure of 1800 bar by optimal design by simplification of component and changing number of springs and plates of DPI. It was found that a direct needle-driven piezo injection system features the prototype DPI for passenger vehicle to operate at 1800 bar of injection pressure.

Application of wasted soybean oil non-esterified on turbo-charged diesel engines with common rail fuel injection system (커먼레일 연료 분사 방식 과급 디젤기관에서 비에스테르화 폐식용유의 적용)

  • Jung, Suk-Ho;Kim, Kyong-Hyon;Lee, Han-Seong;Koh, Dae-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • A demand for bio-diesel oil increases as one of solution for exhaustion of fossil fuel and reduction of $CO_2$ emission, and research on bio-diesel is being carried out. Bio-diesel oil is mainly esterified from vegetable oil with methanol in order to use for fuel on diesel engine and has demerit that costs are increased as compared with directly using like non-esterified one. Bio-diesel oil within 3% mixed with gas oil is used at present, proportion of bio-diesel oil will be increase by 5% in future. We judged that wasted soybean oil non-esterified could be used on diesel engine with an electronic fuel injection according to previous researches with a mechanical fuel injection. A performance test using only gas oil, gas oil with esterified bio-diesel oil 5% and wasted soybean oil non-esterified 5% on diesel engine with the electronic fuel injection were carried out. It is noticed that gas oil with wasted soybean oil non-esterified 5% has more similar characteristics to gas oil than gas oil with esterified bio-diesel oil 5%.