• Title/Summary/Keyword: Frequency-hopping signals

Search Result 31, Processing Time 0.032 seconds

Blind Hopping Phase Estimator in Frequency-Hopped FM and BFSK Systems

  • Kim, Myungsup;Seong, Jinsuk;Lee, Seong-Ro
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • A blind hopping phase estimator is proposed for the demodulation of received signals in frequency-hopping spread spectrum systems. The received signals are assumed to be bandwidth limited with a shaping filter, modulated as frequency modulation (FM) or binary frequency shift keying (BFSK), and hopped by predetermined random frequency sequences. In the demodulation procedure in this paper, the hopping frequency tracking is accomplished by choosing a frequency component with maximum amplitude after taking a discrete Fourier transform, and the hopping phase estimator performs the conjugated product of two consecutive signals and moving-average filtering. The probability density function and Cramer-Rao low bound (CRLB) of the proposed estimator are evaluated. The proposed scheme not only is very simple to implement but also performs close to the CRLB in demodulating hopped FM/BFSK signals.

Analysis of Frequency Hopping Signals using Wavelet Transform-Based Scalogram (Wavelet 변환기저 Scalogram을 이용한 주파수 도약신호 분석)

  • 박재오;이정재
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.45-48
    • /
    • 2000
  • In this paper algorithms of frequency hopping sequences generation such as Lempel-Greenberger, optimum Lempel-Greenberger and Kumar sequences for spread spectrum communications are described. Using the scalogram based on wavelet transform, time-frequency characteristics of frequency hopped signals corresponding to the considered hopping sequences are analyzed.

  • PDF

Hopping Information Generation of Unknown Frequency Hopping Signals in Wireless Channel Environments (무선채널환경에서 미상의 주파수 도약신호에 대한 도약정보 생성 기법)

  • Ahn, Junil;Lee, Chiho;Jeong, Unseob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • A frequency hopping(FH) signal can change its carrier frequency during transmission and has spread-spectrum characteristics in these frequency bands. Therefore, FH signals are widely used in applications that require low-probability-of-intercept(LPI) and anti-jamming (AJ) abilities in wireless communication environments. In this study, the authors propose a method for generating hopping information (HI), which includes start time, dwell time, and hopping frequency for unknown FH signals. The proposed blind HI generation method produces signal detection information based on the spectrum data and then extracts HI using operational procedures for estimating the target FH signal's status, such as appearance, maintenance, and termination. Further, simulation results demonstrate that the proposed method provides accurate HI without detection omissions for various FH signals.

A Study on Frequency Hopping Signal Detection Using a Polyphase DFT Filterbank (다상 DFT 필터뱅크를 이용한 도약신호 검출에 관한 연구)

  • Kwon, Jeong-A;Lee, Cho-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.789-796
    • /
    • 2013
  • It is known that the detection of hopping signals without any information about hopping duration and hopping frequency is rather difficult. This paper considers the blind detection of hopping signal's information such as hopping duration and hopping frequency from the sampled wideband signals. In order to find hopping information from the wideband signals, multiple narrow-band filters are required in general, which leads to huge implementation complexity. Instead, this paper employs the polyphase DFT(discrete Fourier transform) filterbank to reduce the implementation complexity. This paper propose hopping signal detection algorithm from the polyphase DFT filterbank output. Specifically, based on the binary image processing, the proposed algorithm is developed to decrease the memory size and H/W complexity. The performance of the proposed algorithm is evaluated through the computer simulation and FPGA (field programmable gate array) implementation.

Online Hop Timing Detection and Frequency Estimation of Multiple FH Signals

  • Sha, Zhi-Chao;Liu, Zhang-Meng;Huang, Zhi-Tao;Zhou, Yi-Yu
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.748-756
    • /
    • 2013
  • This paper addresses the problem of online hop timing detection and frequency estimation of multiple frequency-hopping (FH) signals with antenna arrays. The problem is deemed as a dynamic one, as no information about the hop timing, pattern, or rate is known in advance, and the hop rate may change during the observation time. The technique of particle filtering is introduced to solve this dynamic problem, and real-time frequency and direction of arrival estimates of the FH signals can be obtained directly, while the hop timing is detected online according to the temporal autoregressive moving average process. The problem of network sorting is also addressed in this paper. Numerical examples are carried out to show the performance of the proposed method.

A Design of X band Frequency Hopping Synthesizer using DDS Spurious Reduction Method (DDS 불요파 제거 알고리즘을 이용한 X 대역 주파수 도약 합성기 설계)

  • Kwon, Kun-Sup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.775-784
    • /
    • 2010
  • In this paper we propose a design method of X band frequency hopping synthesizer in terms of phase noise and settling time with DDS driven PLL architecture, which has the advantages of high frequency resolution, fast settling time and small size. In addition, a noble method is proposed to remove the synthesizer output spurious signals due to superposition effect of DDS. The spurious signal which depend on its normalized frequency of DDS, can be dominant if they occur within the PLL loop bandwidth. We verify that the sources of that spurious signals are quasi-amplitude modulation and superposition effect, and suggest that such signals can be eliminated by intentionally creating frequency errors in the developed synthesizer.

A Blind Hopping Phase Estimator in Hopped FM/BFSK Systems (도약 FM/BFSK 시스템에서 블라인드 도약 위상 추정기)

  • Seong, Jinsuk;Jeong, Min-A;Kim, Kyung-Ho;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.573-581
    • /
    • 2014
  • We proposed a hopping phase estimator to demodulate the received signals without any hopping information in frequency hopping spread spectrum systems. The demodulation process in this paper is as follows: hopped frequency tracking is accomplished by choosing a frequency component with maximum amplitude after taking discrete Fourier transform and a hopping frequency estimator which estimates the phase generated by hopped frequency is established through difference product and down-sampling. We obtained the probability density function and variance performance of the proposed estimator and confirmed that the analysis and the simulation results were agreed with each other.

Emulator for Generating Heterogeneous Interference Signals in the Korean RFID/USN Frequency Band

  • Lee, Sangjoon;Yoon, Hyungoo;Baik, Kyung-Jin;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.254-260
    • /
    • 2018
  • In this study, we suggest an emulator for generating multiple heterogeneous interference signals in the Korean radio frequency identification/ubiquitous sensor network (RFID/USN) frequency band. The proposed emulator uses only one universal software radio peripheral to generate multiple heterogeneous interference signals more economically. Moreover, the physical and media access control parameters can be adjusted in real time using the LabVIEW program, thereby making it possible to create various time-varying interference environments easily. As an example showing the capability of the proposed emulator, multiple interference signals consisting of a frequency-hopping RFID signal and two LoRa signals with different spreading factors were generated. The generated signals were confirmed in both frequency and time domains. From the experimental results, we verified that our emulator could successfully generate multiple heterogeneous interference signals with different frequency and time domain characteristics.

AJ Performance of the FH-CSS(Frequency Hopped - Chirp Spread Spectrum) Communication Systems (NED를 사용하는 FH-CSS(Frequency Hopped - Chirp Spread Spectrum)의 항 재밍 성능 분석)

  • Kim, Sung-Ho;Kim, Young-Jae;Hwang, Seok-Gu;Jo, Byoung-Gak;Shin, Kwan-Ho;Kim, Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • In the defence wireless communications, conventional Anti-Jamming techniques(Frequency Hopping/Spread Spectrum or Direct Sequence/Spread Spectrum) are used to overcome a intentional interfering signals which are single/multitone or partial band jammer etc. DS/SS techniques is very strong on tone jamming signal but not to be on a partial band jammer. So FH/SS AJ performances are expected method of an substitution of DS/SS, however FH/SS could not have good performance on some BMTJ(Band Multi-tone Jammer). So this paper proposes FH-CSS (Frequency Hopped - Chirp Spread Spectrum) to get more robustness against jammers(BMTJ, PBNJ) and analyze the AJ performances.

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

  • Kim, Sun-Ryoul;Ryu, Hyuk;Ha, Keum-Won;Kim, Jeong-Geun;Baek, Donghyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.771-776
    • /
    • 2014
  • In this paper, an agile programmable chirp spread spectrum generator for wideband frequency-jamming applications from 20 MHz to 3 GHz is proposed. A frequency-mixing architecture using two voltage-controlled oscillators is used to achieve a wideband operating frequency range, and the direct digital synthesizer (DDS)-based chirping method with a two-point modulation technique is employed to provide a programmable and consistent chirp bandwidth. The proposed signal generator provides the various programmable FM signals from 20 MHz to 3 GHz with a modulation bandwidth from 0 to 400 MHz. The prototype successfully demonstrates arbitrary sequential jamming operation with a fast band-to-band hopping time of < 10 ${\mu}sec$.