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A blind hopping phase estimator is proposed for the 
demodulation of received signals in frequency-hopping 
spread spectrum systems. The received signals are 
assumed to be bandwidth limited with a shaping filter, 
modulated as frequency modulation (FM) or binary 
frequency shift keying (BFSK), and hopped by 
predetermined random frequency sequences. In the 
demodulation procedure in this paper, the hopping 
frequency tracking is accomplished by choosing a 
frequency component with maximum amplitude after 
taking a discrete Fourier transform, and the hopping 
phase estimator performs the conjugated product of two 
consecutive signals and moving-average filtering. The 
probability density function and Cramer-Rao low bound 
(CRLB) of the proposed estimator are evaluated. The 
proposed scheme not only is very simple to implement but 
also performs close to the CRLB in demodulating hopped 
FM/BFSK signals.  
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I. Introduction 

Transmission technologies to transmit a signal safely, and 
against jamming signals, by choosing a robust modulation 
scheme over a channel have been considered in many studies. 
The frequency modulation (FM) and binary frequency shift 
keying (BFSK) are known to be very robust to noise with high 
magnitude since they produce constant enveloped signals. On 
the other hand, they have the drawback that they require more 
bandwidth compared with amplitude modulation and phase 
modulation. 

In the meantime, since frequency hopping (FH) technology 
has high security and strong anti-jamming ability, it has   
been adopted for commercial and military means for radio 
communications [1]. Demodulation of frequency-hopping 
spread spectrum (FHSS) signals is accomplished through 
signal detection and separation [2]–[3]; parameter estimation 
— such as hop timing and hopping frequency [4]–[6]; and  
de-hopping and baseband demodulation. Since these schemes 
are general approaches toward demodulating FHSS signals, 
they have high complexity in their implementation; thus, their 
performances are not usually close to being optimal. 

In this paper, we obtain a simple, yet near-optimally 
performing, demodulation scheme for frequency modulation/ 
frequency hopping (FM FH)/BFSK signals. Specifically, we 
propose a hopping phase estimator for FM FH/BFSK systems 
that does not require any information on the hopping frequency 
when the symbol duration and shaping pulse are known; hence, 
it is a blind hopping phase estimator. We also suggest a tone 
filter to improve the signal-to-noise ratio (SNR) of the received 
signal. We transform the hopped signal into instant hopping 
phases, establish a hopping phase estimator, evaluate the 
Cramer-Rao low bound (CRLB) performance of the estimator, 
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and then compare it with the result obtained by simulation. 

The rest of this paper is organized as follows. In Section II, 

we introduce a transmitter model and its functions. In Section 

III, we derive a receiver model and demodulation scheme. In 

Section IV, the performance of the proposed scheme is 

analyzed and shown to be efficient.  

II. Transmitter 

The transmit signal is depicted in Fig. 1. A transmit burst 

consists of a dwell time in which the information-bearing 

signal is transmitted and a blanking interval — a pause time. 

The FM FH signal may be represented as 
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where N is the number of hopping frequencies, Ac 
is the 

amplitude, fc 
is the carrier frequency, fi 

is the hopping frequency, 
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a shaping pulse. Defining 

   m2π ,x t f x t                (4) 
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and 2π ,i if   the signal model (1) can be 

represented compactly as 
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Fig. 1. FHSS signal. 
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III. Demodulation 

The hopping FM signals have very low SNR since they  
have wide frequency bandwidth compared with their own 
bandwidth in the baseband, as shown Fig. 2. To demodulate the 
spread spectrum (SS) signal, the signal contaminated by noise 
should be converted to a high-SNR baseband signal. The FM-
hopping SS signal, which is generated using thousands of 
hopping carriers, can be regarded as a tone during this short 
time interval, since the information-bearing signal bandwidth is 
very narrow compared with that of the hopping bandwidth. 

To mitigate the noise included in the wideband signal, we 
can use a DFT with the samples obtained from the short time 
interval. After sampling the wideband signal at a sufficiently 
high rate compared with the baseband symbol transmission 
speed, we use the DFT of the obtained signal and take a sample 
of signals having the largest amplitudes among the DFT 
samples. We then reduce the sampling rate by taking a sample 
for every DFT size. Thus, we obtain a down-sampled signal; 
for example, 1,024. These procedures are depicted in Fig. 3. 

Dropping the ωi

 

term in (5) and Hilbert transforming it, we 
have 

    c c 0
exp d .

t
w t A j t j x    

 

   

    

(6) 

This signal can be separated as a product of two terms as 

      ,w t c t s t                 (7) 

where  

   cexpc t j t                (8a)

 
is the complex carrier and 
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exp d

t
s t A j x               (8b) 

is the information-bearing signal. When we sample the signal 
w(t) at the sampling frequency fs = 1/Ts, we obtain 
 

 

Fig. 2. Hopping signal and noise. 
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Fig. 3. Noise reduction and conversion to baseband signal. 
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     s s s .w kT c kT s kT              (9) 

The spectrum of w(kTs), W(ejω), can be represented as the 
convolution of two frequency-domain signals C(ejω) and  
S(ejω) as  

     .j j jW e C e S e              (10) 

We know that the sampled FM baseband signal is modulated 
by a sampled carrier frequency. On the other hand, since the 
frequency domain representation of a complex carrier is 
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the sampled FM signal becomes 
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Thus, we know that the sampled FM signal is shifted by ωc and 
is modulated by a sampled carrier. In general, a complex carrier 
can be represented as 

  c 0( ) exp 2π ,t j f t  
       

   (13) 

where θ0 
is the initial phase in the interval [0, 2π).   

As shown in Fig. 4, from the product of two samples taken at 
times k–1 and k, we have a phase 
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where 1 s s1 / .k kt t T f    
From this phase, we have a frequency as 
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Fig. 4. Sampling of a complex carrier. 
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Fig. 5. Frequency characteristics of a sampled complex carrier. 
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which is depicted in Fig. 5. From Fig. 5, since the sample 

frequency range is s s/ 2 ( ) / 2,f h f f    when the 

bandwidth of the message signal is within fs, the spectrum 

range of the sampled SS is confined as   

s sBW ,
2 2W

f f
  

              
(16)  

where BWW denotes the bandwidth of W(f). Therefore, we 
know that as long as we sample the SS signal at more than 
twice the baseband signal bandwidth, there is no information 
loss and that it will appear as a modulated signal to a sample 
carrier.  

Without loss of generality and for mathematical simplicity, 
we let ωc = 0

 
and Ac = 1

 
in (5); thus, we have 
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We define a product of two functions with a positive value t 
as 
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where 
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In the function  , ,b t t   ic t  is a phasor that has a phase 

consisting of a hopping frequency ωi and a time offset t , and 

it appears as a point in the complex plane. The phase in the 

phasor increases as the hopping frequency increases, and vice 

versa. The term  ,s t t  in (19b) includes information in the 

form of a complex exponential function, and the integrand for 

small t can be represented as  
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Substituting (20) with (19) yields 

      , exp .ib t t c t jx t t   
       

(21) 

We define a hopping phase estimator to estimate the phase 
caused by a hopping frequency as  
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The term x(t + kT) in the summation term has 2πf  when  

dk = 1, but it has 2πf  when dk = –1. As shown in Fig. 1, if 

the dwell time L(= NT) is sufficiently long, since the probability 

that dk = 1 and the probability that dk = –1 are the same, then 

the summation term in (22) can be written as 
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Substituting the average term in (22) with (23) yields 

   ˆ .i it c t   
              

(24) 

This hopping phase estimator does not have any hopping phase 

term. With this estimator and  , ,b t t  we define a complex 

conjugate product as 
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The right term is irrelevant to index i in  *ˆ ;i t   thus, we 

can drop it and obtain the information 
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From this equation, we know that the frequency-hopping SS 

signal can be demodulated using the two functions  ,b t t  

and  ˆ t   without any hopping information. 
On the other hand, in the case of including a carrier 

frequency, (18) can be written as 
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Through the same procedure as above, we can obtain the total 
hopping phase estimator  

     c
ˆ ˆexp .t j t t     
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Since the total hopping phase estimator includes the term 

 cexp ,j t   which is generated by a carrier frequency, and 

 ˆ ,t   which is a hopping phase estimator, it can estimate 
the total phase generated by a carrier and a hopping frequency. 
For BFSK systems, developing the above procedure, we have 
a hopping phase estimator from (see Appendix, A-9) as 
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c c

ˆ exp cos 2π .i it A j t f t       

   

(29) 

Since 2
cA  and  tfπ2cos  are real and the phase of 

 ˆ
i t   is generated by a carrier and a hopping frequency, the 

phase estimator represented by (29) shows that it can estimate 
the phase generated by any carrier and any hopping frequency. 
Therefore, we can demodulate a BFSK-type SS signal in the 
same way that we can an FM-type signal, by applying the 
same method. 

IV. Performance Analysis 

1. Performance of Tone Filter 

Let an input signal be r(k), and let us take the DFT over the 
signal as 

   
1

0

1 2π
exp ,

            0, 1, 2, ... , 1,

M

l

kl
R k r l j

M M

k M





   
 

 

        (30) 

where M is the size of the DFT. Then assume that the input 
signal has only a single frequency component 
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M
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where ( )k  is a noise with zero mean and variance 2.  
Inserting (31) into (30), we have 

      ,R k k m V k             (32) 

where  
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and V(k) is the kth frequency component among the DFT 
outputs of ( )k . This means that they are all noise terms 
except when k = m for V(k). We need only the term containing 
the frequency component, so we take a term with maximum 
amplitude as 

 max .
k

w R k                (34) 

This proposed scheme is very simple to mitigate the noise 
effect on the signal for a wideband signal, such as in the case of 
frequency-hopping SS signals whose baseband signals have 
constant envelope. The DFT of an FM or FSK signal in a short 
time interval has a high amplitude component and many small 
amplitude components contaminated by noise. 

Taking a sample with maximum amplitude from the DFT 
results is equivalent to taking a sample with maximum 
amplitude from M narrow bandpass filters. Therefore, taking 
the DFT is regarded as separating the input signal into signal 
and noise. The relation between input and output with respect 
to SNR can be written as 
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out inSNR SNR .M             (35) 

This shows that M, of DFT size, should be set up to be 
sufficiently big to obtain high gain. Therefore, for FM- and 
FSK-type SS signals, we can obtain high gain by taking the 
DFT of the incoming signal contaminated by noise and then 
taking a frequency component comprising high-amplitude 
signals. 

2. Performance of Hopping Frequency Estimator 

In the analysis, since the carrier and the hopping frequency 
do not affect the performance of a hopping phase estimator, we 
drop their terms so that ωc = 0

 
and ωi = 0, and add a noise term 

as 

      
0

exp d ,
t

q t j x n t         (36) 

where n(t) is the additive white Gaussian noise term with mean 
0 and variance 2.n  We define a random variable ( )k  as 
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From (B-7) in the Appendix, the mean of ( )k  is  
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and it is independent of k. We define a hopping phase estimator 
as 
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Investigating (37) and (38), we can see that ( )k  and ( )l  
for k l  are independent, because they are taken at different 
times from each other. By the central limit theorem, we can 
regard ˆ ( )k  as having a Gaussian distribution, so the mean 
of ˆ ( )k  is 
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and the second moment is 

   

   

*
2,

1 1
*

2
0 0

ˆ ˆE

1
E .

N N

k l

m k k

k l
N



 

 

    

    
        (42) 

Substituting the expectation term in (42) with (B-17) of the 
Appendix yields 
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With (41) and (43), the standard deviation becomes 
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where 2SNR 1/ .n  It is clear that a random variable 
ˆ ( )k  has a real part that has mean  and standard deviation 

/ 2   and an imaginary part that has mean zero and 
standard deviation / 2.    

We define a random variable for the phase of a hopping 
phase estimator, to analyze the performance, as 
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We can obtain the PDF of  k̂  through converting from 
Cartesain coordinates to polar coordinates as 
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         

 
     

 

 
where   2

0

2
erf d .

π

x tx e t   

The function  ˆf 


 consists of two terms. The first term is 

independent of , but the second term is dependent on  . The 

first term is a function of   and ,  and diminishes as 

SNR increases and disappears as SNR tends toward infinity. 

The second term is dependent on , and as   increases, the 

width of ˆ ( )f 


 is narrower. As the standard deviation   

increases, the width of ˆ ( )f 


 becomes wider. When   
approaches to infinity, ˆ ( )f 


 approaches to 1/π. This is a 

special case of uniform density functions. Since both end 

points of the second term are zero, it is obvious 

that      2 2
ˆ π / 2 1/ π exp / .f  
     The figures of 

ˆ ( )f 


 with various parameters are depicted in Fig. 6. In these 

figures, we can see that the PDFs can be well approximated as 

Gaussian functions for several parameters. 
Though (46) is of a closed form, it is still very complicated to 



6   Myungsup Kim et al. ETRI Journal, Volume 37, Number 1, February 2015 
http://dx.doi.org/10.4218/etrij.15.0114.0809 

integrate. This is unfortunate, because it is essential to do so to 
evaluate the first and second moments to obtain the phase 
variance performance. To mitigate this problem, we can write 
(46) in the form of a power series, to be tractable, as 

   
 

 
1

2
2 1

ˆ 2
0 0

2

2

11
1 2 cos

π 2 1 ! !

exp  π / 2 π / 2.

k lk

k l

k l

f
k k l

 


 


 
 

 


  



           
 

     
 


 (47) 

The proposed estimator can be evaluated by CRLB, which is a 
lower bound on the variance of any unbiased estimator. Since 
the PDF of the proposed estimator can be approximated well as 
a Gaussian function, as shown in Fig. 6, the CRLB of      
the proposed estimator becomes the variance of that, 
approximately. Since ˆ ( )f 


is an even function and ˆ ( )f 

   
 

Fig. 6. PDF and Gaussian approximations: (a)  = 0.65 and (b)
 = 0.95. 
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is an odd function, the mean of ˆ ( )k  is zero, and from (C-
9a) the variance is given by 

 
   

   

 

12 12 2
2
ˆ 2 2 1

0 0 0

2

2

1 2 1π 2
 

12 π 2 1 ! !2

, , exp , (48)

k l kk l

k l
k l m

k l

mk k l

Q m k l







   

 
   



               
  
    

 

where 

   
 

3

1

2

π
1,

12
, ,

π 1
otherwise.

2 1

m k l

m k l

Q m k l

m k l

  


  

  
   

 

The variance performances of ˆ ( )k  are depicted in Fig. 7, 
and from them, it is obvious that the proposed estimator is very 
efficient, since the CRLB and variance obtained by simulation  
 

 

Fig. 7. Phase variance performance (o: CRLB, *: simulation): (a) 

= 0.65 and (b) = 0.95. 
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show perfect efficiency at low and high SNRs, and they show 

only a small difference between them for all other SNR values. 

There is an unusual characteristic in that although SNR 

increases toward infinity, the variance does not tend toward  

zero, as shown in Fig. 7. This is because when SNR is infinity, 

the standard deviation is not zero but  21 / .N  Despite 

the noise being absent, the standard deviation does not tend 

toward zero because of self-noise in the proposed estimator. 

The reduction methods of self-noise are increasing the value  

of 
 

(so that it nearly reaches the value of 1) or significantly 

increasing N. However, these high values increase the 

implementation complexity, because the sampling rate of the 

input signal and the taps of an average filter should be 

increased. Therefore, there is a tradeoff in the proposed scheme 

between system performance and implementation complexity. 

V. Conclusion  

We proposed a scheme to improve SNR using the DFT of 
the incoming signal, which was contaminated by noise over the 
channel, and investigated its performance. We also proposed 
and analyzed a hopping phase estimator required to 
demodulate a hopped frequency modulation/binary frequency 
shift keying (FM/BFSK) signal. Since the estimator consisted 
of two consecutive samples and a moving-average filter, its 
structure was easy to implement and performance easy to 
analyze. 

We obtained a probability density function for the proposed 
estimator to evaluate the performance and found that it could 
be approximated by a Gaussian function. To evaluate the 
performance of the proposed scheme, we obtained the Cramer-
Rao low bound (CRLB) of the proposed phase estimator with 
the Gaussian function and compared it with the result obtained 
by simulation. It was verified that the proposed estimator was 
very efficient, since the CRLB and variance obtained by 
simulation showed perfect efficiency at low and high SNRs 
and only a small difference between them for all other SNR 
values. 

Since the proposed scheme is very simple to implement and 
has near-perfect efficiency, it will be useful in demodulating 
hopped FM/BFSK signals without any prior information for 
carrier synchronization. 

Appendix A: Hopping Phase Estimator for Hopped 
BFSK Signal 

In the case where the information data is modulated by 
BFSK, the FHSS signal can be represented as 

 
    c ccos 0, 1, 2, ... , 1,iq t A t t y t i M      (A-1) 

where 

     

   

H L

H L

1 1
1 2π 1 2π

2 2

1 1 π ,

k k

k k

y t d f t d f t

d f d f t

           
   
         

(A-2) 

where fH is a selected frequency when dk = 1 and fL is a selected 
frequency when dk = –1. Hilbert transforming (A-1), we have  

    c cexp 0, 1, 2, ... , 1.iw t A j t t y t i M         

(A-3) 

We define a function,  , ,b t t

 

as 

  *, ( ) ( ).b t t w t w t t   

          

(A-4) 

Through the same procedure as a hopped FM system, we can 
obtain 

       2
c cexp exp ,ik A j t jdy t kT     

  

(A-5) 

where 

  ( ) ( ).dy t y t y t t             (A-6) 

We define a hopping phase estimator as 

   

     

1

0

1
2
c c

0

1ˆ

1
exp exp .

N

i
k

N

i
k

t k
N

A j t jdy t kT
N

 









   

   





 (A-7) 
When N is sufficiently large, the probability that fH is selected 
when dk = 1 and fL is selected when dk = –1 is 1/2. Therefore, 
we have  

  

   
0

H L

1
exp

1 1
exp 2π exp 2π .

2 2

N

k

jdy t kT
N

j f t j f t





   



     

(A-8) 

If we design symmetrically so that L H ,f f f     then 

(A-7) becomes  

 

      2
c c

ˆ exp cos 2π .i it A j t f t       

 

(A-9) 

Appendix B: Expectation of Γ(k) and Γ(k) Γ*(l) 

We separate Si(k) into two terms as follows: 

      ,i i iS k G k Z k             (B-1) 

where Gi(k) and Zi(k), except Z1(k), are the information-bearing 
signal and noise, respectively. From (42), we have 
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    1 exp d ,
t kT

t kT t
G k j x  



 
         (B-2a) 

    2 0
exp d ,

t kT
G k j x  


           (B-2b) 

    3 0
exp d ,

t kT t
G k j x  

 
         (B-2c) 

 4 1,G k 
                 

(B-2d) 

and

   1 1,Z k 
                 

(B-3a) 

   *
2 ,Z k n t kT t  

          

(B-3b) 

   3 ,Z k n t kT 
             

(B-3c) 

     *
4 .Z k n t kT n t kT t    

     

(B-3d)

 
We obtain the mean of ( )k

 
as  

   
4

1

E E .i
i

m k S k


        
         

(B-4) 

Since information-bearing terms are independent of noise 
terms, it is obvious that 

     E E E .i i iS k G k Z k                   (B-5) 

From (B-3), we know that 

 E 0 2, 3, 4.iZ k i   
   

       (B-6) 

Therefore, (B-4) becomes 

 

     
1E

E exp d E exp

.

t kT

t kT t

m G k

j x jx t t 







 

   
        



 (B-7) 

We obtain the expectation of    *k l 
 
as follows: 

   

   

       

*

4 4
*

1 1

4 4
* *

1 1

E

E

E E .

p q
p q

p q p q
p q

k l

S k S l

G k G l Z k Z l

 

 

   

   

       



     

(B-8) 

Inspecting noise terms from (B-3a) to (B-3d), since they are 
independent for Zp(k) and Zq(k), we have  

       *
* E ,

E
otherwise.0

p p
p q

Z k Z l p q
Z k Z l

         


 (B-9) 

On the other hand, for the different times k and l, (B-9) may be 
written as follows: 

     
*

2

1 1,
E

1.p p
n

p
Z k Z l

k l p 
       

     (B-10) 

Substituting    *E p qZ k Z l    in (B-1) by (B-10), we have 

   

       

*

4 2 2*
1 1

2

E

E E E .p p
p

k l

G k G l G k Z k


   

             
(B-11) 

In (B-11), the first term becomes 

   

     
    

*
1 1

2

E

E exp d exp d

1 . (B-12)

t kT t lT

t kT t t lT t

G k G l

j x j x

k l k l

   

  

 

   

  
    

    

   

From (B-2), we know that 

     2 2 2

2 3 4E E E

1.

G k G k G k           


    (B-13) 

From (B-3), we know that 

  2

1E 1,Z k    
              (B-14) 

   2 2 2
2 3E E ,nZ k Z k     

   
     (B-15) 

  2 4
4E .nZ k     

             (B-16) 

Finally, inserting results from (B-12) to (B-16) into (B-8) yields 

   
      

*

2 4 2

E

1 2 1 .n n

k l

k l k l    

   

      
 (B-17) 

Appendix C: Derivation of (50) 

We define two PDFs as follows: 

 a

1
π / 2 π / 2,

π
otherwise,

0
f




    


        (C-1) 

 b

cos
π / 2 π / 2,

2
otherwise.

0
f

 


    


     (C-2) 

Then we can write (52) as 

     
 

   
1

2
2 1

ˆ a b2
0 0

2

2

14

π 2 1 ! !

exp . (C-3)

k lk
k l

k l

f f f
k k l

  





 
 

 


  



          
 

  
 


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The moment generating function is 

   

   
 

  

ˆ

1
2

a 2
0 0

2

b 2

d

14

π 2 1 ! !

, 2 1 exp ,

j

k lk

k l

F f e

F
k k l

F k l

  











 
 

  





         
        



  (C-4) 

where 

 a

π
sin

2
,

π
F






 
 
              (C-5) 

 
 

 b

0

π
sin 2

1 2
,

22

n

n
r

s r
s

F s
r s r






             
 .   (C-6) 

The first and second moments for the two functions are 

 
a ,1 a 0 0,fm j F




  


          (C-7a) 

 
a

2 2

,2 a2

π
0 ,

12fm F



  


        (C-7b) 

 
b ,1 b 0, 2 0,fm j F n




  


      (C-8a) 
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 

b
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,2 b2
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0
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0, 2 ,

π
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4
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n r








 





       
 


  (C-8b) 

Therefore, the variance for the PDF given by (C-3) becomes 

 
   

   

 

12 12 2
2
ˆ 2 2 1

0 0 0

2

2

1 2 1π 2
 

12 π 2 1 ! !2

, , exp , (C-9a)
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




   

 
   



               
  
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