• 제목/요약/키워드: Frequency domain approach

검색결과 388건 처리시간 0.038초

Z-Domain Frequency Dependent AC System Equivalent for Electromagnetic Transient Studies (전자기 과도 현상 해석을 위한 Z 영역에서의 주파수 의존 교류시스템 등가)

  • Wang, Yong-P.;Hur, Dong-Y.;Park, Hee-C.;Chung, Hyeng-H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.252-255
    • /
    • 2001
  • Modern power systems are very complex and to model them completly is impractical for electromgnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing FDNE is presented and demonstrated. The FDNE is generated by Linearized Least Square fitting the frequency response of a z-domain formulation. The advantage of this approach is that a direct implementation occurs which dose not incur errors due to discretization inherent with implementing a fitting function in the s-domain. The developed FDNE is accurate and efficient.

  • PDF

On Stability for Design of Repetitive Controllers in Frequency Domain (주파수 영역에서 연속반복학습제어기 설계 안정성 해석)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제12권4호
    • /
    • pp.126-130
    • /
    • 2007
  • This paper presents a method to design a repetitive controller that is specified in the specified trajectory for the repetitive works. With the single-model design approach, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed single-model design method produces a repetitive controller in a single nominal model of the system.

  • PDF

Tuning Algorithm for PID Controller Using Model Reduction in frequency Domain (주파수 영역에서의 모델 축소를 이용한 PID 제어기의 동조 알고리즘)

  • Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2114-2116
    • /
    • 2001
  • Model reduction from high order systems to low order systems in frequency domain is considered four point (${\angle}$G(jw)=0, - ${\pi}/2$, ${\pi}$, and -3${\pi}$/2) instead of two point (${\angle}$G(jw) = - ${\pi}$/2,- ${\pi}$) of existing method in Nyquist curve. The Performances of reduced order model by proposed approach is similar to original model. In this paper, we proposed a new tuning algorithm for PID controller using model reduction in frequency domain. Simulations for some examples with varies dynamic characteristics are provided to show the effectiveness of the proposed tuning algorithm for PID controller using model reduction.

  • PDF

Dynamic Model Identification of Quadrotor UAV based on Frequency-Domain Approach (주파수 영역 기반 쿼드로터 무인기 운동 모델 식별)

  • Jung, Sunggoo;Kim, Sung-Yug;Jung, Yeundeuk;Kim, Eung-Tai
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • 제23권4호
    • /
    • pp.22-29
    • /
    • 2015
  • Quadrotor is widely used in variable application nowadays. Due to its inherent unstable characteristics, control system to augment the stability is essential for quadrotor operation. To design control system and verify its performance through simulation, accurate dynamic model is required. Quadrotor dynamic model is simply compared with conventional rotorcraft such as helicopter. However, the accurate dynamic model of quadrotor is not easy to develop because of the highly correlated aerodynamic effect of each rotor. In this paper, quadrotor dynamic model is identified from the flight data using frequency domain approach. Flight test of quadrotor is performed in closed loop configuration with stability augmentation system included. Frequency sweep input is applied in each of lateral, longitudinal, yaw and heave axis separately. The bare dynamic model is identified from the flight data of quadrotor responses and thrust measurement through Pulse Width Modulation(PWM) data. The frequency responses of identified model match well with those of flight data, and time responses of identified model for doublet input in each axis are also shown to agree with flight data.

Application of Wavenumber-TD approach for time harmonic analysis of concrete arch dam-reservoir systems

  • Lotfi, Vahid;Zenz, Gerald
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.353-371
    • /
    • 2018
  • The Wavenumber or more accurately Wavenumber-FD approach was initially introduced for two-dimensional dynamic analysis of concrete gravity dam-reservoir systems. The technique was formulated in the context of pure finite element programming in frequency domain. Later on, a variation of the method was proposed which was referred to as Wavenumber-TD approach suitable for time domain type of analysis. Recently, it is also shown that Wavenumber-FD approach may be applied for three-dimensional dynamic analysis of concrete arch dam-reservoir systems. In the present study, application of its variation (i.e., Wavenumber-TD approach) is investigated for three-dimensional problems. The method is initially described. Subsequently, the response of idealized Morrow Point arch dam-reservoir system is obtained by this method and its special cases (i.e., two other well-known absorbing conditions) for time harmonic excitation in stream direction. All results for various considered cases are compared against the exact response for models with different values of normalized reservoir length and reservoir base/sidewalls absorptive conditions.

A Feedforward Partial Phase Noise Mitigation in the Time-Domain using Cyclic Prefix for CO-OFDM Systems

  • Ha, Youngsun;Chung, Wonzoo
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.467-470
    • /
    • 2013
  • We propose a blind feedforward phase noise mitigation method in the time-domain for a coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. By exploiting the redundancy of the cyclic prefix (CP), the proposed scheme acquires the overall phase noise difference information during an OFDM block and attempts to mitigate the phase noise in the time domain using a linear approximation. The proposed algorithm mitigates common phase error (CPE) and inter-carrier-interference (ICI) due to phase noise simultaneously, improving the system performance, especially when decision-directed equalizers are used. The simulation results demonstrate the effectiveness of the proposed feedforward phase noise mitigation approach in time domain.

LQ-Servo PI Controller Design Using LMI (LMI를 이용한 LQ-서보형 PI제어기 설계)

  • 김상엽;서병설
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.728-731
    • /
    • 1999
  • This paper concerns a development of LQ-servo PI controller design on the basis of time-domain approach. This is because the previous design techniques developed on the frequency-domain is not well suited to meet the time-domain design specifications. Our development techniques used in this paper is based on the convex optimization methods including Lagrange multiplier, dual concept, semidefinite programming.

  • PDF

A Study on the Mismatch of Time and Frequency Domain for Vibration Criteria of Sensitive Equipment (고정밀 장비의 진동허용규제치에 대한 시간 및 주파수 영역에서 나타나는 불일치 문제에 관한 연구)

  • 이홍기;김강부;백재호
    • Journal of the Semiconductor & Display Technology
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2002
  • Modem technology depends on the reliability of extremely high precision equipments. In the production of semiconductor wafer, optical and electron microscopes, ion-beam, laser device must maintain their alignments within a sub-micrometer. This equipment requires a vibration free environment to provide its proper function. Therefore, this high technology equipments require very strict environmental vibration criteria because it is used as basic data for the design of building structure and structural dynamics of equipment. In this paper, the new approach is proposed to investigate the mismatch problem of time and frequency domain for vibration criteria of sensitive equipment. The proposed approach is based on a vibration measurement data and a relative transfer function which can be obtained by experiment or analysis.

  • PDF

Meta-model-based Design Method for Frequency-domain Performance Reliability Improvement (주파수 영역에서의 성능 신뢰도 향상을 위한 메타 모델을 이용한 설계 방법)

  • Son, Young Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제39권1호
    • /
    • pp.19-26
    • /
    • 2015
  • This paper proposes a design method for improving the frequency-domain performance reliability of dynamic systems with uncertain and degrading components. Discrete frequencies are used in this method as surrogates for the frequency band of interest, and the conformance of the frequency responses to the specification at these frequencies is utilized to model the frequency-domain performance reliability. A meta-model for the frequency responses, an extreme-value event, and the set-theory are integrated to improve the computational efficiency of the reliability estimation. In addition, a sample-based approach is presented to evaluate and optimize the estimated performance reliability. A case study of a vibration absorber system showed that the proposed design method has engineering applications.

Development of an Infinite Element for Non-linear Dynamic Analysis of Structures (구조물의 비선형 동적 해석을 위한 무한요소의 개발)

  • Kwon, Min-Ho;Han, Gil-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권3호
    • /
    • pp.1053-1058
    • /
    • 2010
  • Infinite element approach has been widely used to analysis soil-structure interaction, in which the soil domain is treated as infinite domain. However, most of the developed infinite element has been formulated in the frequency domain rather than the time domain to include the frequency contents of the earthquake or vibration wave. Due to that, those approaches have a critical limitation which is restricted to the linear elastic analysis. To main objective of this research is to develop the infinite element in the time domain to cooperate the inelastic soil and structure behavior. Developed infinite element is verified with the results of finite element analysis modeled in large domain. The nonlinear analysis also conducted to demonstrate the application of developed infinite element. Hence, based on above-mentioned statements, it can be concluded that the propose approach would assist for structure-seismic design.