• Title/Summary/Keyword: Frequency Tuning Range

Search Result 227, Processing Time 0.027 seconds

A Pipelined Hash Join Method for Load Balancing (부하 균형 유지를 고려한 파이프라인 해시 조인 방법)

  • Moon, Jin-Gue;Park, No-Sang;Kim, Pyeong-Jung;Jin, Seong-Il
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.755-768
    • /
    • 2002
  • We investigate the effect of the data skew of join attributes on the performance of a pipelined multi-way hash join method, and propose two new hash join methods with load balancing capabilities. The first proposed method allocates buckets statically by round-robin fashion, and the second one allocates buckets adaptively via a frequency distribution. Using hash-based joins, multiple joins can be pipelined so that the early results from a join, before the whole join is completed, are sent to the next join processing without staying on disks. Unless the pipelining execution of multiple hash joins includes some load balancing mechanisms, the skew effect can severely deteriorate system performance. In this paper, we derive an execution model of the pipeline segment and a cost model, and develop a simulator for the study. As shown by our simulation with a wide range of parameters, join selectivities and sizes of relations deteriorate the system performance as the degree of data skew is larger. But the proposed method using a large number of buckets and a tuning technique can offer substantial robustness against a wide range of skew conditions.

A VHF/UHF-Band Variable Gain Low Noise Amplifier for Mobile TV Tuners (모바일 TV 튜너용 VHF대역 및 UHF 대역 가변 이득 저잡음 증폭기)

  • Nam, Ilku;Lee, Ockgoo;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.90-95
    • /
    • 2014
  • This paper presents a VHF/UHF-band variable gain low noise amplifier for multi-standard mobile TV tuners. A proposed VHF-band variable gain amplifier is composed of a resistive shunt-feedback low noise amplifier to remove external matching components, a single-to-differential amplifier with input PMOS transcoductors to improve low frequency noise performance, a variable shunt-feedback resistor and an attenuator to control variable gain range. A proposed UHF-band variable gain amplifier consists of a narrowband low noise amplifier with capacitive tuning to improve noise performance and interference rejection performance, a single-to-differential with gm gain control and an attenuator to adjust gain control range. The proposed VHF-band and UHF-band variable gain amplifier were designed in a $0.18{\mu}m$ RF CMOS technology and draws 22 mA and 17 mA from a 1.8 V supply voltage, respectively. The designed VHF-band and UHF-band variable gain amplifier show a voltage gain of 27 dB and 27 dB, a noise figure of 1.6-1.7 dB and 1.3-1.7 dB, OIP3 of 13.5 dBm and 16 dBm, respectively.

Cavity-type Beam Position Monitors for Future Accelerators (차세대 가속기용 공동형 빔위치 측정기 개발)

  • Kim S.H.;Park Y.J.;Hwang W.H.;Huang J.Y.;Honda Y.;Inoue Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.331-337
    • /
    • 2006
  • Cavity-type beam position monitors were developed in collaboration with KEK to use for the future accelerators such as international linear collider (ILC) or x-ray free electron laser (XFEL) in PAL. BPM components such as BPM cavity, beam tubes, waveguides and feedthroughs were assembled by brazing at the same time to reduce mechanical errors during the fabrication. There are four screwed pins around outer rim of the cavity for the tuning of cavity frequency and x-y isolation. The resonance frequency of BPM is 6.422 GHz, the inner diameter of cavity is 53.822 mm, and the range of mechanical adjusting is $+ / - 250{\mu}m$. The x-y isolation was measured better than -40 dB after tuned. Test results of signal forms, x-y isolations, sensitivities are satisfied within requirements for the KEK ATF2 beam line.

A Class-C type Wideband Current-Reuse VCO With 2-Step Auto Amplitude Calibration(AAC) Loop (2 단계 자동 진폭 캘리브레이션 기법을 적용한 넓은 튜닝 범위를 갖는 클래스-C 타입 전류 재사용 전압제어발진기 설계)

  • Kim, Dongyoung;Choi, Jinwook;Lee, Dongsoo;Lee, Kang-Yoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.94-100
    • /
    • 2014
  • In this paper, a design of low power Current-Reuse Voltage Controlled Oscillator (VCO) which has wide tuning range about 1.95 GHz ~ 3.15 GHz is presented. Class-C type is applied to improve phase noise and 2-Step Auto Amplitude Calibration (AAC) is used for minimizing the imbalance of differential VCO output voltage which is main issue of Current-Reuse VCO. The mismatch of differential VCO output voltage is presented about 1.5mV ~ 4.5mV. This mismatch is within 0.6 % compared with VCO output voltage. Proposed Current-Reuse VCO is designed using CMOS $0.13{\mu}m$ process. Supply voltage is 1.2 V and current consumption is 2.6 mA at center frequency. The phase noise is -116.267 dBc/Hz at 2.3GHz VCO frequency at 1MHz offset. The layout size is $720{\times}580{\mu}m^2$.

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.

Novel Power Bus Design Method for High-Speed Digital Boards (고속 디지털 보드를 위한 새로운 전압 버스 설계 방법)

  • Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.23-32
    • /
    • 2006
  • Fast and accurate power bus design (FAPUD) method for multi-layers high-speed digital boards is devised for the power supply network design tool for accurate and precise high speed board. FAPUD is constructed, based on two main algorithms of the PBEC (Path Based Equivalent Circuit) model and the network synthesis method. The PBEC model exploits simple arithmetic expressions of the lumped 1-D circuit model from the electrical parameters of a 2-D power distribution network. The circuit level design based on PBEC is carried with the proposed regional approach. The circuit level design directly calculates and determines the size of on-chip decoupling capacitors, the size and the location of off-chip decoupling capacitors, and the effective inductances of the package power bus. As a design output, a lumped circuit model and a pre-layout of the power bus including a whole decoupling capacitors are obtained after processing FAPUD. In the tuning procedure, the board re-optimization considering simultaneous switching noise (SSN) added by I/O switching can be carried out because the I/O switching effect on a power supply noise can be estimated over the operation frequency range with the lumped circuit model. Furthermore, if a design changes or needs to be tuned, FAPUD can modify design by replacing decoupling capacitors without consuming other design resources. Finally, FAPUD is accurate compared with conventional PEEC-based design tools, and its design time is 10 times faster than that of conventional PEEC-based design tools.

A Design of PLL and Spread Spectrum Clock Generator for 2.7Gbps/1.62Gbps DisplayPort Transmitter (2.7Gbps/1.62Gbps DisplayPort 송신기용 PLL 및 확산대역 클록 발생기의 설계)

  • Kim, Young-Shin;Kim, Seong-Geun;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper presents a design of PLL and SSCG for reducing the EMI effect at the electronic machinery and tools for DisplayPort application. This system is composed of the essential element of PLL and Charge-Pump2 and Reference Clock Divider to implement the SSCG operation. In this paper, 270MHz/162MHz dual-mode PLL that can provide 10-phase and 1.35GHz/810MHz PLL that can reduce the jitter are designed for 2.7Gbps/162Gbps DisplayPort application. The jitter can be reduced drastically by combining 270MHz/162MHz PLL with 2-stage 5 to 1 serializer and 1.35GHz PLL with 2 to 1 serializer. This paper propose the frequency divider topology which can share the divider between modes and guarantee the 50% duty ratio. And, the output current mismatch can be reduced by using the proposed charge-pump topology. It is implemented using 0.13 um CMOS process and die areas of 270MHz/162MHz PLL and 1.35GHz/810MHz PLL are $650um\;{\times}\;500um$ and $600um\;{\times}\;500um$, respectively. The VCO tuning range of 270 MHz/162 MHz PLL is 330 MHz and the phase noise is -114 dBc/Hz at 1 MHz offset. The measured SSCG down spread amplitude is 0.5% and modulation frequency is 31kHz. The total power consumption is 48mW.