• Title/Summary/Keyword: Frequency Response Function(FRF)

Search Result 146, Processing Time 0.025 seconds

Evaluation of the Dynamic Modulus by using the Impact Resonance Testing Method (비파괴충격파 시험법을 이용한 동탄성계수 평가)

  • Kim, Dowan;Jang, ByungKwan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS : The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine. CONCLUSIONS : The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

Estimation of rail irregularity using wavelet transfer function (웨이브렛 전달함수를 이용한 궤도틀림 추정)

  • Yoon, Seok-Jun;Choi, Bai-Sung;Lee, Hyeung-Jin;Kim, Man-Cheol;Choi, Sung-Hoon;Shin, Soo-Bong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.330-337
    • /
    • 2010
  • This paper shows an algorithm for identifying track irregularities using wavelet transfer function along the railway. An equivalent SISO wavelet transfer function is defined using continuous wavelet transform by the measured track geometry and acceleration at a bogie of a train. The estimated track geometry is made by inverse continuous wavelet transform from the regressed signals of measured acceleration signal and the pre-defined wavelet transfer function. The estimated rail irregularity geometry is evaluated by the coherence function and comparison of FRF(Frequency Response Function). As a result of evaluated outcome, This algorithm is regarded as appropriate for estimation of rail irregularity.

  • PDF

Determination of the Operating Frequency and Pipe Design of Inverter Air-conditioner considering Dynamic Characteristics of Inverter Rotary Compressor (진동 특성 파악을 통한 인버터 에어컨의 운전 주파수 및 파이프 형상 결정)

  • 모진용;이진교;박득용;김진섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.203-206
    • /
    • 2001
  • The reduction of chopping noise generated from inverter compressor and the piping design reducing vibration are the most important items in the quality of air conditioner. The chopping noise is identified by the study of the relationship between carrier frequency and natural frequency of the compressor shell. The high carrier frequency is the key factor in reduction of carrier noise. To keep the natural frequencies of the system as far as away from the operating frequencies appears to be the most important factor in the design of piping system.

  • PDF

Shaking Table Test for an Evaluation of the Limit State Capacity of an Anchor Foundation in the case of a Seismic Event (지진시 앵커기초의 한계성능 평가를 위한 진동대 실험)

  • Kim, Min-Kyu;Choi, In-Kil;Kwon, Hyung-O
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.23-31
    • /
    • 2010
  • In this study, a shaking table test was performed for the evaluation of the failure capacity of an anchor foundation system in the case of an aged condition. For the shaking table test, three kinds of specimens were manufactured as follows: 1) a non-damaged anchor; 2) a specimen with cracks running through the anchor; and 3) a specimen with cracks along the expected corn-shape fracture away from the anchor. A dynamic characteristic was determined through a measurement of the frequency response function (FRF), and the seismic capacity was evaluated by using a shaking table test. Failure capacities were calculated using an acceleration response and it was compared with the anchor design code.

A Study on the Weight Minimization of an Automobile Engine Block by Optimum Structural Modification (최적구조변경법에 의한 자동차 엔진 블록의 중량최소화에 관한 연구)

  • 길병래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.560-568
    • /
    • 1998
  • Recently to develop an automobile with better properities many researches and investments have been executed. In this paper we intend to improve the automobile properties by reducing the weight of the engine without changing the dynamic characteristics. At first the vibration analysis by the Substructure Synthesis Mehtod and the exciting test of the engine model performed to confirm the reliability of the analyzing tools. And the weight minimiza-tion is performed by the Sensitivity Analysis and the Optimum Structural Modificationl. To decrease the engine weight ideally the weight of the parts with the low sensitivity is to cut mainly and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with the high sensitivity. As actually the mathematical unique solution for the homogeneous problem(i. e. 0 object func-tion problem)does not exist we redesign the engine block with much thinner initial thickness and recover the natural frequencies and natural modes of original structure by the sensitivity analy-sis and then observe the Frequency Response Function(FRF) for the interesting points. In this analysis the original thickness of the engine model is 8mm and the redesigned initial thicknesses are 5mm and 6mm, And the number of the interesting natural frequencies are 1, 2, 3, 4 and 5 respectively.

  • PDF

Development of the structural health record of containment building in nuclear power plant

  • Chu, Shih-Yu;Kang, Chan-Jung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2038-2045
    • /
    • 2021
  • The main objective of this work is to propose a reliable routine standard operation procedures (SOP) for structural health monitoring and diagnosis of nuclear power plants (NPPs). At present, NPPs have monitoring systems that can be used to obtain the quantitative health record of containment (CTMT) buildings through system identification technology. However, because the measurement signals are often interfered with by noise, the identification results may introduce erroneous conclusions if the measured data is directly adopted. Therefore, this paper recommends the SOP for signal screening and the required identification procedures to identify the dynamic characteristics of the CTMT of NPPs. In the SOP, three recommend methods are proposed including the Recursive Least Squares (RLS), the Observer Kalman Filter Identification/Eigensystem Realization Algorithm (OKID/ERA), and the Frequency Response Function (FRF). The identification results can be verified by comparing the results of different methods. Finally, a preliminary CTMT healthy record can be established based on the limited number of earthquake records. It can be served as the quantitative reference to expedite the restart procedure. If the fundamental frequency of the CTMT drops significantly after the Operating Basis Earthquake and Safe Shutdown Earthquake (OBE/SSE), it means that the restart actions suggested by the regulatory guide should be taken in place immediately.

Vibration Analysis of Shaft with Impeller for Resin Chock Mixing Machine (Resin Chock 교반기용 임펠러가 달린 축의 진동해석)

  • Hong, Do-Kwan;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.970-977
    • /
    • 2008
  • This paper deals with the dynamic characteristics of the shaft with impeller model which is the most important part in developing the resin mixing machine. Through reverse engineering, it is possible to make the shaft with impeller geometry model which is necessary vibration characteristic analysis by commercial impeller. The natural frequency analysis and structural analysis using finite element analysis software are performed on the imported commercial shaft with impeller model. The most important fundamental natural frequency of the shaft with impeller model is around 14.5 Hz, which well agrees with modal testing. The most effective design variables were extracted by ANOM(analysis of means) and pareto chart. This paper presents approximation 2nd order polynomial as design variables using RSM(response surface methodology). Generally, RSM take 2 or 3 design variables, but this method uses 5 design variables with table of mixed orthogonal array. Further more, the analyzed result of the commercial shaft with impeller is to be utilized for the structural design of resin chock mixing machine.

Damage Evaluation of Cracked Laminated Composite Plates Using Experimental Modal Analysis (실험 모드해석을 이용한 균열 적층복합판의 손상평가)

  • Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.399-410
    • /
    • 2012
  • In this study, vibration tests are performed on cantilevered and clamped-clamped laminated composite rectangular plates using experimental modal analysis technique. The damages are simulated by applying progressive line cracks to the laminated composite plates for damage evaluations due to crack growth. The changes of frequency response functions(FRFs), MAC values, and modal parameters (frequency, mode shape and damping ratio) of the damaged composite plates, which are obtained by the modal testing of impact hammer, are investigated. Each experimental modal parameter of the progressively damaged composite plates is compared with natural frequencies and mode shapes obtained by finite element analysis. It is seen that the damage can be evaluated from the changes in the geometric properties and structural behaviors of the laminated composite plates resulting from the model updating process of the finite element model as a benchmark.

Earthquake response analysis of series reactor

  • Bai, Changqing;Xu, Qingyu;Zhang, Hongyan
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.621-634
    • /
    • 2005
  • A direct transfer substructure method is presented in this paper for analyzing the dynamic characteristics and the seismic random responses of a series reactor. This method combines the concept of FRF (frequency response function) and the transfer matrix algorithm with the substructure approach. The inner degrees of freedom of each substructure are eliminated in the process of reconstruction and the computation cost is reduced greatly. With the convenient solution procedure, the dynamic characteristics analysis of the structure is valid and efficient. Associated with the pseudo excitation algorithm, the direct transfer substructure method is applied to investigating the seismic random responses of the series reactor. The numerical results demonstrate that the presented method is efficient and practicable in engineering. Finally, a precise time integration method is employed in performing a time-history analysis on the series reactor under El Centro and Taft earthquake waves.