Acknowledgement
The research described in this paper was financially supported by the National Key R&D Program of China (2018YFE0125400, 2019YFE0112600, 2017YFC0806100) and National Natural Science Foundation of China (U1709216).
References
- Bahar, A., Salavati-Khoshghalb, M. and Ejabati, S.M. (2018), "Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping", Smart Struct. Syst., Int. J., 21(3), 359-371. https://doi.org/10.12989/sss.2018.21.3.359
- Batou, A. and Adhikari, S. (2019), "Optimal parameters of viscoelastic tuned-mass dampers", J. Sound Vib., 445, 17-28. https://doi.org/10.1016/j.jsv.2019.01.010
- Brock, J.E. (1946), "A note on the damped vibration absorber", Transact. Am. Soc. Mech. Engr., 13(4), A284-A284. https://doi.org/10.1115/1.4009588
- Cao, Y.H., Xiang, H.F. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", J. Eng. Mech. ASCE, 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1)
- Christenson, R.E., Spencer Jr, B.F. and Johnson, E.A. (2015), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)
- Den Hartog, J.P. (1934), Mechanical Vibrations, McGraw Hill, New York, NY, USA.
- Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng. Mech., 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778)
- Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer Jr, B.F., Ko, J.M. and Fang, Y. (2019a), "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 521-536. https://doi.org/10.12989/sss.2019.23.6.521
- Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer Jr, B.F., Ko, J.M. and Dong, S.H. (2019b), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.521
- Duan, Y.F., Chen, Q.Y., Zhang, H.M., Yun, C.B., and Zhu, Q. (2019c), "CNN-based damage identification method of tiedarch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507
- Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(269)
- Gao, H., Wang, H., Li, J., Wang, Z., Liang, R., Xu, Z. and Ni, Y. (2019), "Optimum design of viscous inerter damper targeting multi-mode vibration mitigation of stay cables", Eng. Struct., 226, 111375. https://doi.org/10.1016/j.engstruct.2020.111375
- Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044
- Hogsberg, J. (2011), "The role of negative stiffness in semi-active control of magneto-rheological dampers", Struct. Control Health Monitor., 18(3), 289-304. https://doi.org/10.1002/stc.371
- Hua, Y., Wong, W. and Cheng, L. (2018), "Optimal design of a beam-based dynamic vibration absorber using fixed-points theory", J. Sound Vib., 421, 111-131. https://doi.org/10.1016/j.jsv.2018.01.058
- Iemura, H. and Pradono, M.H. (2010), "Simple algorithm for semi-active seismic response control of cable-stayed bridges", Earthq. Eng. Struct. Dyn., 34(4-5), 409-423. https://doi.org/10.1002/eqe.440
- Ikago, K., Saito, K. and Inoue, N. (2012a), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138
- Ikago, K., Sugimura, Y., Saito, K. and Inoue, N. (2012b), "Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers", J. Asian Architect. Build. Eng., 11(2), 375-382. https://doi.org/10.3130/jaabe.11.375
- Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., Int. J., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285
- Javanbakht, M., Cheng, S. and Ghrib, F. (2018), "Refined damper design formula for a cable equipped with a positive or negative stiffness damper", Struct. Control Health Monitor., 25(10), e2236. https://doi.org/10.1002/stc.2236
- Jeong, S., Lee, J., Cho, S. and Sim, S. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695
- Johnson, E.A., Spencer Jr, B.F. and Fujino, Y. (1999a), "Semiactive damping of stay cables: A preliminary study", Proceedings of the 1999 17th International Modal Analysis Conference (IMAC), Kissimmee, FL, USA, pp. 417-423.
- Johnson, E.A., Baker, G.A., Spencer Jr, B.F. and Fujino, Y. (1999b), "Semiactive damping of stay cables", J. Eng. Mech., 133(1), 1-11. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(1)
- Kovacs, I. (1982), "Zur Frage der Seilschwingungen und der seildampfung", Bautechnik, 10, 325-332.
- Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776. https://doi.org/10.1115/1.1322037
- Krenk, S. (2005), "Frequency analysis of the tuned mass damper", J. Appl. Mech., 72(6), 936-942. https://doi.org/10.1115/1.2062867
- Krenk, S. and Hogsberg, J. (2009), "Optimal resonant control of flexible structures", J. Sound Vib., 323(3-5), 530-554. https://doi.org/10.1016/j.jsv.2009.01.031
- Krenk, S. and Nielsen, S.R.K. (2002), "Vibrations of a shallow cable with a viscous damper", Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 458(2018), 339-357. https://doi.org/10.1098/rspa.2001.0879
- Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monitor., 15(2), 120-142. https://doi.org/10.1002/stc.200
- Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new result", J. Sound Vib., 284(3-5), 1181-1189. https://doi.org/10.1016/j.jsv.2004.08.002
- Lu, L., Duan, Y.F., Spencer Jr, B.F., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monitor., 24(10), 1-12. https://doi.org/10.1002/stc.1986
- Lu, L., Fermandois, G.A., Lu, X.L., Spencer Jr, B.F. and Zhou, Y. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589
- Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
- Ministry of Transport of the People's Republic of China (2018), Wind-resistant Design Specification for High Way Bridges, JTG/T 3360-01-2018.
- Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355
- Ni, Y.Q., Duan, Y.F., Chen, Z.Q. and Ko, J.M. (2002), "Damping identification of MR-damped bridge cables from in-situ monitoring under wind-rain-excited conditions", Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 4696, 41-51. https://doi.org/10.1117/12.472573
- Ozer, M.B. and Royston, T.J. (2005), "Extending Den Hartog's vibration absorber technique to multi-degree-of-freedom systems", J. Vib. Acoust., 127(4), 341-350. https://doi.org/10.1115/1.1924642
- Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng. ASCE, 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
- Ren, M.Z. (2001), "A variant design of the dynamic vibration absorber", J. Sound Vib., 245(4), 762-770. https://doi.org/10.1006/jsvi.2001.3564
- Shen, Y., Peng, H., Li, X. and Yang, S. (2017), "Analytically optimal parameters of dynamic vibration absorber with negative stiffness", Mech. Syst. Signal Process., 85, 193-203. https://doi.org/10.1016/j.ymssp.2016.08.018
- Shum, K.M. (2009), "Closed form optimal solution of a tuned liquid column damper for suppressing harmonic vibration of structures", Eng. Struct., 31(1), 84-92. https://doi.org/10.1016/j.engstruct.2008.07.015
- Shi, X. and Zhu, S.Y. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002
- Shi, X. and Zhu, S.Y. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042
- Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, (Third Edition), John Wiley & Sons, Inc., New York, NY, USA.
- Spencer Jr, B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech. ASCE, 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
- Wang, M., Sun, F., Yang, J. and Nagarajaiah, S. (2019), "Seismic protection of SDOF systems with a negative stiffness amplifying damper", Eng. Struct., 190, 128-141. https://doi.org/10.1016/j.engstruct.2019.03.110
- Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015
- Wong, W.O., Fan, R.P. and Cheng, F. (2018), "Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory", J. Acoust. Soc. Am., 143(2), 1064-1075. https://doi.org/10.1121/1.5024506
- Zhu, X., Chen, Z. and Jiao, Y. (2018), "Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates", J. Low Freq. Noise Vib. Active Control, 37(4), 1188-1200. https://doi.org/10.1177/1461348418794563