Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.1.089

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method  

Duan, Y.F. (College of Civil Engineering and Architecture, Zhejiang University)
Dong, S.H. (College of Civil Engineering and Architecture, Zhejiang University)
Xu, S.L. (College of Civil Engineering and Architecture, Zhejiang University)
Yun, C.B. (College of Civil Engineering and Architecture, Zhejiang University)
Publication Information
Smart Structures and Systems / v.30, no.1, 2022 , pp. 89-106 More about this Journal
Abstract
The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.
Keywords
cable vibration control; fixed-points method; mode split; multi-mode control; multiple VIMDs; optimal design; viscous inertial mass damper;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Ikago, K., Sugimura, Y., Saito, K. and Inoue, N. (2012b), "Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers", J. Asian Architect. Build. Eng., 11(2), 375-382. https://doi.org/10.3130/jaabe.11.375   DOI
2 Den Hartog, J.P. (1934), Mechanical Vibrations, McGraw Hill, New York, NY, USA.
3 Shum, K.M. (2009), "Closed form optimal solution of a tuned liquid column damper for suppressing harmonic vibration of structures", Eng. Struct., 31(1), 84-92. https://doi.org/10.1016/j.engstruct.2008.07.015   DOI
4 Shi, X. and Zhu, S.Y. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002   DOI
5 Shi, X. and Zhu, S.Y. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042   DOI
6 Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, (Third Edition), John Wiley & Sons, Inc., New York, NY, USA.
7 Spencer Jr, B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech. ASCE, 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)   DOI
8 Wang, M., Sun, F., Yang, J. and Nagarajaiah, S. (2019), "Seismic protection of SDOF systems with a negative stiffness amplifying damper", Eng. Struct., 190, 128-141. https://doi.org/10.1016/j.engstruct.2019.03.110   DOI
9 Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015   DOI
10 Wong, W.O., Fan, R.P. and Cheng, F. (2018), "Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory", J. Acoust. Soc. Am., 143(2), 1064-1075. https://doi.org/10.1121/1.5024506   DOI
11 Zhu, X., Chen, Z. and Jiao, Y. (2018), "Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates", J. Low Freq. Noise Vib. Active Control, 37(4), 1188-1200. https://doi.org/10.1177/1461348418794563   DOI
12 Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., Int. J., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285   DOI
13 Javanbakht, M., Cheng, S. and Ghrib, F. (2018), "Refined damper design formula for a cable equipped with a positive or negative stiffness damper", Struct. Control Health Monitor., 25(10), e2236. https://doi.org/10.1002/stc.2236   DOI
14 Ikago, K., Saito, K. and Inoue, N. (2012a), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138   DOI
15 Jeong, S., Lee, J., Cho, S. and Sim, S. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695   DOI
16 Johnson, E.A., Spencer Jr, B.F. and Fujino, Y. (1999a), "Semiactive damping of stay cables: A preliminary study", Proceedings of the 1999 17th International Modal Analysis Conference (IMAC), Kissimmee, FL, USA, pp. 417-423.
17 Johnson, E.A., Baker, G.A., Spencer Jr, B.F. and Fujino, Y. (1999b), "Semiactive damping of stay cables", J. Eng. Mech., 133(1), 1-11. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(1)   DOI
18 Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new result", J. Sound Vib., 284(3-5), 1181-1189.   DOI
19 Kovacs, I. (1982), "Zur Frage der Seilschwingungen und der seildampfung", Bautechnik, 10, 325-332.
20 Ozer, M.B. and Royston, T.J. (2005), "Extending Den Hartog's vibration absorber technique to multi-degree-of-freedom systems", J. Vib. Acoust., 127(4), 341-350. https://doi.org/10.1115/1.1924642   DOI
21 Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng. ASCE, 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)   DOI
22 Ren, M.Z. (2001), "A variant design of the dynamic vibration absorber", J. Sound Vib., 245(4), 762-770. https://doi.org/10.1006/jsvi.2001.3564   DOI
23 Shen, Y., Peng, H., Li, X. and Yang, S. (2017), "Analytically optimal parameters of dynamic vibration absorber with negative stiffness", Mech. Syst. Signal Process., 85, 193-203. https://doi.org/10.1016/j.ymssp.2016.08.018   DOI
24 Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng. Mech., 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778)   DOI
25 Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer Jr, B.F., Ko, J.M. and Fang, Y. (2019a), "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 521-536. https://doi.org/10.12989/sss.2019.23.6.521   DOI
26 Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer Jr, B.F., Ko, J.M. and Dong, S.H. (2019b), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.521   DOI
27 Duan, Y.F., Chen, Q.Y., Zhang, H.M., Yun, C.B., and Zhu, Q. (2019c), "CNN-based damage identification method of tiedarch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507   DOI
28 Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(269)   DOI
29 Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044   DOI
30 Hogsberg, J. (2011), "The role of negative stiffness in semi-active control of magneto-rheological dampers", Struct. Control Health Monitor., 18(3), 289-304. https://doi.org/10.1002/stc.371   DOI
31 Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665   DOI
32 Ni, Y.Q., Duan, Y.F., Chen, Z.Q. and Ko, J.M. (2002), "Damping identification of MR-damped bridge cables from in-situ monitoring under wind-rain-excited conditions", Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 4696, 41-51. https://doi.org/10.1117/12.472573   DOI
33 Hua, Y., Wong, W. and Cheng, L. (2018), "Optimal design of a beam-based dynamic vibration absorber using fixed-points theory", J. Sound Vib., 421, 111-131. https://doi.org/10.1016/j.jsv.2018.01.058   DOI
34 Iemura, H. and Pradono, M.H. (2010), "Simple algorithm for semi-active seismic response control of cable-stayed bridges", Earthq. Eng. Struct. Dyn., 34(4-5), 409-423. https://doi.org/10.1002/eqe.440   DOI
35 Gao, H., Wang, H., Li, J., Wang, Z., Liang, R., Xu, Z. and Ni, Y. (2019), "Optimum design of viscous inerter damper targeting multi-mode vibration mitigation of stay cables", Eng. Struct., 226, 111375. https://doi.org/10.1016/j.engstruct.2020.111375   DOI
36 Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776. https://doi.org/10.1115/1.1322037   DOI
37 Krenk, S. (2005), "Frequency analysis of the tuned mass damper", J. Appl. Mech., 72(6), 936-942. https://doi.org/10.1115/1.2062867   DOI
38 Krenk, S. and Hogsberg, J. (2009), "Optimal resonant control of flexible structures", J. Sound Vib., 323(3-5), 530-554. https://doi.org/10.1016/j.jsv.2009.01.031   DOI
39 Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monitor., 15(2), 120-142. https://doi.org/10.1002/stc.200   DOI
40 Lu, L., Duan, Y.F., Spencer Jr, B.F., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monitor., 24(10), 1-12. https://doi.org/10.1002/stc.1986   DOI
41 Lu, L., Fermandois, G.A., Lu, X.L., Spencer Jr, B.F. and Zhou, Y. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589   DOI
42 Ministry of Transport of the People's Republic of China (2018), Wind-resistant Design Specification for High Way Bridges, JTG/T 3360-01-2018.
43 Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355   DOI
44 Bahar, A., Salavati-Khoshghalb, M. and Ejabati, S.M. (2018), "Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping", Smart Struct. Syst., Int. J., 21(3), 359-371. https://doi.org/10.12989/sss.2018.21.3.359   DOI
45 Brock, J.E. (1946), "A note on the damped vibration absorber", Transact. Am. Soc. Mech. Engr., 13(4), A284-A284. https://doi.org/10.1115/1.4009588   DOI
46 Cao, Y.H., Xiang, H.F. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", J. Eng. Mech. ASCE, 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1)   DOI
47 Christenson, R.E., Spencer Jr, B.F. and Johnson, E.A. (2015), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)   DOI
48 Batou, A. and Adhikari, S. (2019), "Optimal parameters of viscoelastic tuned-mass dampers", J. Sound Vib., 445, 17-28. https://doi.org/10.1016/j.jsv.2019.01.010   DOI
49 Krenk, S. and Nielsen, S.R.K. (2002), "Vibrations of a shallow cable with a viscous damper", Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 458(2018), 339-357. https://doi.org/10.1098/rspa.2001.0879   DOI