• 제목/요약/키워드: Free-Free Beam

검색결과 1,207건 처리시간 0.034초

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Hozhabrossadati, Seyed Mojtaba
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.349-358
    • /
    • 2018
  • This paper investigates the free vibration analysis of double-beam system coupled by a two-degree-of-freedom mass-spring system. In order to generalize the model, the main beams are assumed to be elastically restrained against translation and rotation at one end and free at the other. Furthermore, the mass-spring system is elastically connected to the beams at adjustable positions by means of four translational and rotational springs. The governing differential equations of the beams and the mass-spring system are derived and analytically solved by using the Fourier transform method. Moreover, as a second way, a finite element solution is derived. The frequency parameters and mode shapes of some diverse cases are obtained using both methods. Comparison of obtained results by two methods shows the accuracy of both solutions. The influence of system parameters on the free vibration response of the studied mechanical system is examined.

Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory

  • Hadji, Lazreg;Avcar, Mehmet
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.281-293
    • /
    • 2021
  • This paper presents a new nonlocal Hyperbolic Shear Deformation Beam Theory (HSDBT) for the free vibration of porous Functionally Graded (FG) nanobeams. A new displacement field containing integrals is proposed which involves only three variables. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect and its account for shear deformation by a hyperbolic variation of all displacements through the thickness without using the shear correction factor. It has been observed that during the manufacture of Functionally Graded Materials (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the free vibration analysis of FG beams taking into account the influence of these imperfections is established. Four different porosity types are considered for FG nanobeam. Material characteristics of the FG beam are supposed to vary continuously within thickness direction according to a power-law scheme which is modified to approximate material characteristics for considering the influence of porosities. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio, and the porosity types on the dynamic responses of the nanobeam are discussed.

끝단에 스프링과 질량을 가진 단진보의 자유진동해석 (Free Vibration Analysis of a Stepped Cantilever Beam with a Mass and a Spring at the End)

  • 유춘성;홍동표;정태진;정길도
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2812-2818
    • /
    • 1996
  • A cantilever beam with a mass and a spring at the end can be use to model a miniature flexible arm. It is necessary to know the natural frequencies and mode shapes to discuss its free vibration, especially when modal analysis is employed. A beam is clamped-free. In this paper we look at the lateral vibration of beams that have step changes in the properties of their cross sections. The frequency equation is derived by Bernoulli-Euler formulation and is sloved by the separation of variable. The parameters of the beam, 'mass and spring stiffness' are defined as nondimensionalized parameters for wide application of the results. According to the change of eigenvalues and mode shape are presented for this beam. The results presented are the eigenvalues and the natural frequencies for the first three modes of vibration. Results show that the parameters have a significant effect on the natural frequency.

유연보의 진동제어를 위한 구조계와 제어계의 동시최적화 (Simultaneous Optimization of Structural and Control Systems for Vibration Control of Flexible Beams)

  • 김창동;정의봉
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3127-3135
    • /
    • 1994
  • An approach to the simultaneous optimal design of structure and control system for large free-free flexible beam is presented. The flexible beam is modeled by the finite element method. And the reduced model of small degree of freedom is constructed by use of modal analysis. The tapered beam is considered so that the number of design variables is not dependent on the increasing number of finite elements. The width of several points of tapered beam and control gain are taken as design variables. The shape of beam and control gain are optimized simultaneously for the minimum weight of total structure including control system subject to the constraints of the magnitude of displacement of beam. It is shown that the simultaneous optimal design of structure and control systems is indeed useful.

이중크랙을 가진 단순지지 보의 자유진동 해석 (Free Vibration Analysis of Simply Supported Beam with Double Cracks)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.600-603
    • /
    • 2005
  • In this paper we studied about the effect of the double cracks on the dynamic behavior of a simply supported beam. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The simply supported beam is modeled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting three undamaged beam segments. The influences of the crack depth and position of each crack on the vibration mode and the natural frequencies of a simply supported beam are analytically clarified. The theoretical results are also validated by a comparison with experimental measurements.

  • PDF

압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화 (Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators)

  • 송명관;한인선;김선훈;최창근
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.183-195
    • /
    • 2003
  • 본 연구에서는 판형태의 압전감지기와 압전작동기가 접착되어 있는 보형태의 스마트구조물의 자유진동제어에 대한 유한요소모형화 방법을 제안한다. 압전재료의 직접압전효과와 역압전효과에 대한 구성방정식을 고려하고 변분원리를 이용하여 스마트보유한요소의 운동방정식을 유도한다. 이러한 2절점 보 유한요소근 등매개변수요소로서 Timoshenko 보이론을 기초로 한다. 따라서, 보형태의 스마트구조물을 제안하는 스마트보 유한요소에 의하여 해석함으로써 전압이 작용되는 압전작동기에 의한 구조물의 제어와 전압을 측정하는 압전감지기에 의한 구조물의 모니터링에 대한 수치적인 시뮬레이션이 가능해진다 이러한 스마트보유한요소와 Constant-gain feed back control 기법을 이용하여 압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모델을 제안한다

비대칭 단면을 갖는 박벽곡선보의 자유진동에 관한 수치적 및 해석적 연구 (Analytical and Numerical Study on Saptially Coupled Free Vibration of Nonsymmetric Thin-Walled Curved Girders)

  • 김남일;김문영
    • 한국강구조학회 논문집
    • /
    • 제14권3호
    • /
    • pp.423-432
    • /
    • 2002
  • 비대칭 박벽단면을 갖는 곡선보의 자유진동해석을 수행할 수 있는 엄밀해 및 유한요소 이론을 제시한다. 단순지지된 일축대칭 박벽단면을 갖는 곡선보의 면내 자유진동 모드에 대응하는 엄밀해를 산정하였으며, 곡섬보를 유한요소로 분할하여 요소의 변위장을 요소의 변위벡터의 대하여 축방향 신장조건에서는 3차 그리고 비신장조건에서는 5차의 Hermitian 다항식으로 나타내고, 이를 운동방정식에 대입함으로써 탄성강성행렬과 질량행렬을 유도한다. 또한 본 연구에서 얻어진 엄밀해와 곡선보요소를 이용한 유한요소 해석결과를 ABAQUS 쉘요소를 이용하여 얻어진 결과와 비교 검토함으로써 본 연구의 타당성을 입증한다. 특히 곡선보의 축방향 비신장조건과 두께-곡률효과가 동적거동에 미치는 영향을 조사한다.

Nd:YAG 레이저빔을 이용한 아연도금강판(SECC)과 쾌삭강봉(SUM24L)의 용접에 관한 연구 (Welding behavior between Zn-coated steel plate and free cutting carbon steel rod by Nd:YAG laser beam)

  • 노영태;김병철;김도훈;윤갑식
    • 한국레이저가공학회지
    • /
    • 제4권3호
    • /
    • pp.30-39
    • /
    • 2001
  • This work was tamed out to apply a laser welding technique in joining between a Zn coated low carbon steel plate(SECC) and a free cutting carbon steel shaft(SUM24L) with or without W coating. Experiments were carried out and analysed by applying the FD(factorial design)method to obtain the optimum Laser welding condition. Optical microscopy, SEM, TEM and XRD analyses were performed in order to observe the microstructures in the fusion zone and the HAZ. Mechanical properties of the welded specimens were examined by microhardness test, tensile test and twist test. There was no flawed Zn in the fusion zone by EDS analysis. This means that during the welding process, Zn gas could be eliminated by appropriate shielding gas flow rate and butt welding gap. Ni coating itself did not influence on the tensile strength and hardness. However, twist bending strength and the weld depth of the Ni-coated free cutting carbon steel were lower as compared with those of the uncoated free cutting carbon steel. It was attributed to a lower absorbance of laser beam to the shin Ni surface. According to the results of the factorial design tests, the twist bending strength of welded specimens was primarily affected by pulse width, laser power, frequency and speed.

  • PDF

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.