References
- Abu-Hilal, M. (2006), "Dynamic response of a double Euler-Bernoulli beam due to a moving constant load", J. Sound Vib., 297(3-5), 477-491. https://doi.org/10.1016/j.jsv.2006.03.050
- Ariaei, A, Ziaei-Rad, S. and Ghayour, M. (2011), "Transverse vibration of a multiple-Timoshenko beam system with intermediate elastic connections due to a moving load", Arch. Appl. Mech., 81(3), 263-281. https://doi.org/10.1007/s00419-010-0410-2
- Banerjee, J.R. (2003), "Dynamic stiffness formulation and its application for a combined beam and a two degree-of-freedom system", J. Vib. Acoust., 125(3), 351-358. https://doi.org/10.1115/1.1569943
- Cha, P.D. and Chan, M. (2009), "Mitigating vibration along an arbitrarily supported elastic structure using multiple two-degree-of-freedom oscillators", J. Vib. Acoust., 131, 0310081-03100810.
- Cha, P.D. and Zhou, X. (2008), "Frequency response of a combined structure using a modified finite element method", AIAA J., 46(10), 2408-2415. https://doi.org/10.2514/1.25845
- Chang, T.P. and Chang, C.Y. (1998), "Vibration analysis of beams with a two-degree-of-freedom spring-mass system", Int. J. Solids Struct., 35(5-6), 383-401. https://doi.org/10.1016/S0020-7683(97)00037-1
- Chen, D.W. (2006), "The exact solution for free vibration of uniform beams carrying multiple two-degree-of-freedom spring-mass system", J. Sound Vib., 295(1-2), 342-361. https://doi.org/10.1016/j.jsv.2006.01.011
- De Rosa, M.A. and Lippiello, M. (2007), "Non-classical boundary conditions and DQM for double beams", Mech. Res. Commun., 34(7-8), 538-544. https://doi.org/10.1016/j.mechrescom.2007.08.003
- Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
- El-Sayed, T.A. and Farghaly, S.H. (2016), "Exact vibration of Timoshenko beam combined with multiple mass spring sub-system", Struct. Eng. Mech., 57(6), 989-1014. https://doi.org/10.12989/sem.2016.57.6.989
- Giunta, G., Koutsawa, Y., Belouettar S. and Calvi, A (2014), "A dynamic analysis of three-dimensional functionally graded beams by hierarchical models", Smart Struct. Syst., 13(4), 637-657. https://doi.org/10.12989/sss.2014.13.4.637
- Gurgoze, M. and Erol, H. (2004), "On laterally vibrating beams carrying tip masses, coupled by several double spring-mass systems", J. Sound Vib., 269, 431-438. https://doi.org/10.1016/S0022-460X(03)00372-9
- Gurgoze, M., Erdogan, G. and Inceoglu, S. (2001), "Bending vibrations of beams coupled by a double spring-mass system", J. Sound Vib., 243, 361-369.
- Hozhabrossadati, S.M., Aftabi Sani, A. and Mofid, M. (2016), "Free vibration analysis of a beam with an intermediate sliding connection joined by a mass-spring system", J. Vib. Control, 22(4), 955-964. https://doi.org/10.1177/1077546314538300
- Hozhabrossadati, S.M., Aftabi Sani, A., Mofid, M. and Mehri, B. (2015), "Green's function for uniform Euler-Bernoulli beams at resonant condition: Introduction of Fredholm Alternative Theorem", Appl. Math. Model., 39(12), 3366-3379. https://doi.org/10.1016/j.apm.2014.11.038
- Hozhabrossadati, S.M., Aftabi Sani, A. and Mofid, M. (2015), "Vibration of beam with elastically restrained ends and rotational spring -lumped rotary inertia system at mid-span", Int. J. Struct. Stab. Dynam., 15(2), 1450040. https://doi.org/10.1142/S0219455414500400
- Hussein, M.F.M. and Hunt, H.E.M. (2006), "Modelling of flouting-slab tracks with continuous slabs under oscillating moving loads", J. Sound Vib., 297(1-2), 37-54. https://doi.org/10.1016/j.jsv.2006.03.026
- Inceoglu, S. and Gurgoze, M. (2001), "Bending vibrations of beams coupled by several double spring-mass system", J. Sound Vib., 243, 370-379.
- Jen, M.U. and Magrab, E.B. (1993), "Natural frequencies and mode shapes of beams carrying a two degree-of-freedom spring-mass system", J. Vib. Acoust., 115(2), 202-209. https://doi.org/10.1115/1.2930331
- Jun, L. and Hongxing, H. (2008), "Dynamic Stiffness vibration analysis of an elastically connected three-beam system", Appl. Acoust., 69(7), 591-600. https://doi.org/10.1016/j.apacoust.2007.02.005
- Kukla, S. (1994), "Free vibration of the system of two beams connected by many translational springs", J. Sound Vib., 172, 130-135. https://doi.org/10.1006/jsvi.1994.1163
- Laura, P.A.A., Susemihl, E.A., Pombo, J.L., Luisoni, L.E. and Gelos, R. (1977), "On the dynamic behavior of structural elements carrying elastically mounted concentrated masses", Appl. Acoust., 10(2), 121-145. https://doi.org/10.1016/0003-682X(77)90021-4
- Lee, K.T. (2009), "Vibration of two cantilever beams clamped at one end and connected by a rigid body at the other", J. Mech. Sci. Technol., 23(2), 358-371. https://doi.org/10.1007/s12206-008-1008-2
- Li, J. and Hua, H. (2007), "Spectral finite element analysis of elastically connected double-beam system", Finite Elem. Anal. Des., 43(15), 1155-1168. https://doi.org/10.1016/j.finel.2007.08.007
- Lin, H.P. and Yang, D. (2013), "Dynamic responses of two beams connected by a spring-mass device", J. Mech., 29(1), 143-155. https://doi.org/10.1017/jmech.2012.124
- Magrab, E.B. (2007), "Natural frequencies and mode shapes of Timoshenko beams with attachments", J. Vib. Control, 13(7), 905-934. https://doi.org/10.1177/1077546307078828
- Mao, O. and Wattanasakulpong, N. (2015), "Vibration and stability of a double-beam system interconnected by an elastic foundation under conservative and nonconservative axial load", Int. J. Mech. Sci., 93, 1-7. https://doi.org/10.1016/j.ijmecsci.2014.12.019
- Oniszczuk, Z. (2003), "Forced transverse vibrations of an elastically connected complex simply supported double beam systems", J. Sound Vib., 264(2), 273-286. https://doi.org/10.1016/S0022-460X(02)01166-5
- Rajabi, R., Kargarnovin, M.H. and Gharini, M. (2013), "Dynamic analysis of a simply supported Euler-Bernoulli beam subjected to a moving oscillator", Acta Mechanica, 224(2), 425-446. https://doi.org/10.1007/s00707-012-0769-y
- Rezaiee-Pajand, M. and Hozhabrossadati, S.M. (2016), "Analytical and numerical method for free vibration of double-axially functionally graded beams", Compos. Struct., 152, 488-498. https://doi.org/10.1016/j.compstruct.2016.05.003
- Simsek, M. and Cansiz, S. (2012), "Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load", Compos. Struct., 94(9), 2861-2878. https://doi.org/10.1016/j.compstruct.2012.03.016
- Stojanovic, V. and. Kozic, P. (2012), "Forced transverse vibration of Rayleigh and Timoshenko double-beam system with effect of compressive axial load", Int. J. Mech. Sci., 60(1), 59-71. https://doi.org/10.1016/j.ijmecsci.2012.04.009
- Stojanovic, V., Kozic, P. and Pavlovic, R. (2011), "Effect of rotary inertia and shear on vibration and buckling of a double beam system under compressive axial loading", Arch. Appl. Mech., 81(12), 1993-2005. https://doi.org/10.1007/s00419-011-0532-1
- Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), "Vibration of a double-beam system", J. Sound Vib., 229(4), 807-822. https://doi.org/10.1006/jsvi.1999.2528
- Wu, J.J. (2002), "Alternative approach for free vibration of beams carrying a number of two-degree of freedom spring-mass systems", J. Struct. Eng., 128(12), 604-1616.
- Wu, J.J. (2005), "Use of equivalent-damper method for free vibration analysis of a beam carrying multiple two-degree-of-freedom spring-mass-damper systems", J. Sound Vib., 281(1-2), 275-293. https://doi.org/10.1016/j.jsv.2004.01.013
- Yang, Y.B., Li, Y.C. and Chang, K.C. (2012), "Using two connected vehicles to measure the frequencies of bridges with rough surface: a theoretical study", Acta Mechanica, 223(8), 1851-1861. https://doi.org/10.1007/s00707-012-0671-7
- Zhang, Y.Q., Lu, Y. and. Ma, G.W. (2008), "Effect of compressive axial load on forced transverse vibration of a double-beam system", Int. J. Mech. Sci., 50(2), 299-305. https://doi.org/10.1016/j.ijmecsci.2007.06.003
- Zhang, Y.Q., Lu, Y., Wang, S.L. and Liu, X. (2008), "Vibration and buckling of a double beam system under compressive axial loading", J. Sound Vib., 318(1-2), 341-352. https://doi.org/10.1016/j.jsv.2008.03.055
Cited by
- Formulae for the frequency equations of beam-column system carrying a fluid storage tank vol.73, pp.1, 2020, https://doi.org/10.12989/sem.2020.73.1.083