1 |
Ghumare, S.M. and Sayyad, A.S. (2017), "A new fifth-order shear and normal deformation theory for static bending and elastic buckling of P-FGM beams", Lat. Am. J. Solids Stru., 14(11), 1893-1911.
DOI
|
2 |
Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675.
DOI
|
3 |
Hadji, L., Hassaine Daouadji, T., Meziane, M.A.A., Tlidji, Y. and Bedia, E.A.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325.
DOI
|
4 |
Hadji, L., Khelifa, Z. and Bedia, E.A.A. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841.
DOI
|
5 |
Hassaine Daouadji, T., Henni, A.H., Tounsi, A. and Bedia, E.A.A. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15.
DOI
|
6 |
Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behavior of laminated composite beam by new multi-layered laminated Compos Struct model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546.
DOI
|
7 |
Koizumi, M. (1993), "The concept of FGM", Ceramic Trans. Funct. Grad. Mater., 34, 3-10.
|
8 |
Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B-Eng., 28, 1-4.
|
9 |
Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508.
DOI
|
10 |
Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012a), "A new higher order shear deformation theory for sandwich and composite laminated plates" Compos. Part B Eng., 43(3), 1489-1499.
DOI
|
11 |
Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012b), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49(1), 43-53.
DOI
|
12 |
Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247.
DOI
|
13 |
Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng. A, 362(1-2), 17-39.
DOI
|
14 |
Neves, A.M.A., Ferreira, A.J.M. and Carrera, E. (2012a), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B-Eng., 43(2), 711-725.
|
15 |
Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825.
DOI
|
16 |
Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252.
DOI
|
17 |
Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempele, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng. A, 362(1-2), 40-60.
DOI
|
18 |
Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51(4), 745-752.
DOI
|
19 |
Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696.
DOI
|
20 |
Akavci, S.S. and Tanrikulu, A.H. (2008), "Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories", Mech. Compos. Mater., 44(2), 145-154.
DOI
|
21 |
Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423.
DOI
|
22 |
Ding, J.H., Huang, D.J. and Chen, W.Q. (2007), "Elasticity solutions for plane anisotropic functionally graded beams", Int. J. Solids Struct., 44(1), 176-196.
DOI
|
23 |
Fazzolari, F.A. (2016), "Quasi-3D beam models for the computation of eigen frequencies of functionally graded beams with arbitrary boundary conditions", Compos. Struct., 154, 239-255.
|
24 |
Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B Eng., 136, 254-271.
|
25 |
Sayyad, A.S., Ghugal, Y.M. and Shinde, P.N. (2015a), "Stress analysis of laminated composite and soft-core sandwich beams using a simple higher order shear deformation theory", J. Serbian Soc. Comput. Mech., 9(1), 15-35.
DOI
|
26 |
Sayyad, A.S. and Ghugal, Y.M. (2011b), "Flexure of thick beams using new hyperbolic shear deformation theory", Int. J. Mech., 5(3), 113-122.
|
27 |
Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201.
DOI
|
28 |
Sayyad, A.S. and Ghugal, Y.M. (2017a), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 484-504.
|
29 |
Sayyad, A.S. and Ghugal, Y.M. (2017b), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1-36.
|
30 |
Sayyad, A.S., Ghugal, Y.M. and Naik, N.S. (2015b), "Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory", Curved Layered Struct., 2(1), 279-289.
|
31 |
Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", Mater. Sci. Eng. A, 362(1-2), 61-80.
DOI
|
32 |
Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705.
DOI
|
33 |
Sayyad, A.S. and Ghugal, Y.M. (2011a), "Effect of transverse shear and transverse normal strain on the bending analysis of cross-ply laminated beams", Int. J. Appl. Math. Mech., 7(12), 85-118.
|
34 |
Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-200.
DOI
|
35 |
Vo, T.P., Thai, H.T., Nguyen, T.K. and Inam, F. (2014a), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccanica, 49(1), 155-168.
DOI
|
36 |
Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66.
|
37 |
Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41(245), 742-746.
|
38 |
Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916.
DOI
|
39 |
Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014b), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22.
DOI
|
40 |
Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219.
DOI
|
41 |
Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488.
DOI
|