• Title/Summary/Keyword: Fredholm mapping

Search Result 9, Processing Time 0.018 seconds

SLOW VISCOUS FLOW PAST A CAVITY WITH INFINITE DEPTH

  • Kim, D.W;Kim, S.B;Chu, J.H
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.801-812
    • /
    • 2000
  • Two-dimensional slow viscous flow on infinite half-plane past a perpendicular infinite cavity is considered on the basis of the Stokes approximation. Using complex representation of the two-dimensional Stokes flow, the problem is reduced to solving a set of Fredholm integral equations of the second kind. The streamlines and the pressure and vorticity distribution on the wall are numerically determined.

Spectral mapping theorem and Weyl's theorem

  • Yang, Young-Oh;Lee, Jin-A
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.657-663
    • /
    • 1996
  • In this paper we give some conditions under which the Weyl spectrum of an operator satisfies the spectral mapping theorem for analytic functions. Also we show that Weyl's theorem holds for p(T) where T is an operator of M-power class (N) and p is a polynomial on a neighborhood of $\sigam(T)$. Finally we answer an old question of Oberai.

  • PDF

ON THE CLOSURE OF DOMINANT OPERATORS

  • Yang, Young-Oh
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.481-487
    • /
    • 1998
  • Let (equation omitted) denote the closure of the set (equation omitted) of dominant operators in the norm topology. We show that the Weyl spectrum of an operator T $\in$ (equation omitted) satisfies the spectral mapping theorem for analytic functions, which is an extension of [5, Theorem 1]. Also we show that an operator approximately equivalent to an operator of class (equation omitted) is of class (equation omitted).

  • PDF

EXPANSIVE TYPE MAPPINGS IN DISLOCATED QUASI-METRIC SPACE WITH SOME FIXED POINT RESULTS AND APPLICATION

  • Haripada Das;Nilakshi Goswami
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.245-257
    • /
    • 2024
  • In this paper, we prove some new fixed point results for expansive type mappings in complete dislocated quasi-metric space. A common fixed point result is also established considering such mappings. Suitable examples are provided to demonstrate our results. The solution to a system of Fredholm integral equations is also established to show the applicability of our results.

UTILIZING ISOTONE MAPPINGS UNDER GERAGHTY-TYPE CONTRACTION TO PROVE MULTIDIMENSIONAL FIXED POINT THEOREMS WITH APPLICATION

  • Deshpande, Bhavana;Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.279-295
    • /
    • 2018
  • We study the existence and uniqueness of fixed point for isotone mappings of any number of arguments under Geraghty-type contraction on a complete metric space endowed with a partial order. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. Our results generalize, extend and unify several classical and very recent related results in the literature in metric spaces.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF