• Title/Summary/Keyword: Fractional order differential equations

Search Result 48, Processing Time 0.027 seconds

SOLVABILITY OF SOME NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER VIA MEASURE OF NONCOMPACTNESS

  • Dadsetadi, Somayyeh;Nouri, Kazem;Torkzadeh, Leila
    • The Pure and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • In this article, we investigate the solvability of nonlinear fractional integro-differential equations of the Hammerstein type. The results are obtained using the technique of measure of noncompactness and the Darbo theorem in the real Banach space of continuous and bounded functions in the interval [0, a]. At the end, an example is presented to illustrate the effectiveness of the obtained results.

MULTI-ORDER FRACTIONAL OPERATOR IN A TIME-DIFFERENTIAL FORMAL WITH BALANCE FUNCTION

  • Harikrishnan, S.;Ibrahim, Rabha W.;Kanagarajan, K.
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.119-129
    • /
    • 2019
  • Balance function is one of the joint factors to determine fall in risk theory. It helps to moderate the progression and riskiness of falls for detecting balance and fall risk factors. Nevertheless, the objective measures for balance function require expensive equipment with the assessment of any expertise. We establish the existence and uniqueness of a multi-order fractional differential equations based on ${\psi}$-Hilfer operator on time scales with balance function. This class describes the dynamic of time scales derivative. Our tool is based on the Schauder fixed point theorem. Here, sufficient conditions for Ulam-stability are given.

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER

  • Ben Makhlouf, Abdellatif;Hammami, Mohamed Ali;Sioud, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1309-1321
    • /
    • 2017
  • In this paper, we present a practical Mittag Leffler stability for fractional-order nonlinear systems depending on a parameter. A sufficient condition on practical Mittag Leffler stability is given by using a Lyapunov function. In addition, we study the problem of stability and stabilization for some classes of fractional-order systems.

NUMERICAL SOLUTION OF AN INTEGRO-DIFFERENTIAL EQUATION ARISING IN OSCILLATING MAGNETIC FIELDS

  • PARAND, KOUROSH;DELKHOSH, MEHDI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.261-275
    • /
    • 2016
  • In this paper, an integro-differential equation which arises in oscillating magnetic fields is studied. The generalized fractional order Chebyshev orthogonal functions (GFCF) collocation method used for solving this integral equation. The GFCF collocation method can be used in applied physics, applied mathematics, and engineering applications. The results of applying this procedure to the integro-differential equation with time-periodic coefficients show the high accuracy, simplicity, and efficiency of this method. The present method is converging and the error decreases with increasing collocation points.

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • Odibat, Zaid M.;Momani, Shaher
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.15-27
    • /
    • 2008
  • We present and discuss an algorithm for the numerical solution of initial value problems of the form $D_*^\alpha$y(t) = f(t, y(t)), y(0) = y0, where $D_*^\alpha$y is the derivative of y of order $\alpha$ in the sense of Caputo and 0<${\alpha}{\leq}1$. The algorithm is based on the fractional Euler's method which can be seen as a generalization of the classical Euler's method. Numerical examples are given and the results show that the present algorithm is very effective and convenient.

  • PDF

EXISTENCE OF EVEN NUMBER OF POSITIVE SOLUTIONS TO SYSTEM OF FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

  • Krushna, B.M.B.;Prasad, K.R.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • We establish the existence and multiplicity of positive solutions to a coupled system of fractional order differential equations satisfying three-point boundary conditions by utilizing Avery-Henderson functional fixed point theorems and under suitable conditions.

ANALYTIC SOLUTION OF HIGH ORDER FRACTIONAL BOUNDARY VALUE PROBLEMS

  • Muner M. Abou Hasan;Soliman A. Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.601-612
    • /
    • 2023
  • The existence of solution of the fractional order differential equations is very important mathematical field. Thus, in this work, we discuss, under some hypothesis, the existence of a positive solution for the nonlinear fourth order fractional boundary value problem which includes the p-Laplacian transform. The proposed method in the article is based on the fixed point theorem. More precisely, Krasnosilsky's theorem on a fixed point and some properties of the Green's function were used to study the existence of a solution for fourth order fractional boundary value problem. The main theoretical result of the paper is explained by example.

A STUDY OF A WEAK SOLUTION OF A DIFFUSION PROBLEM FOR A TEMPORAL FRACTIONAL DIFFERENTIAL EQUATION

  • Anakira, Nidal;Chebana, Zinouba;Oussaeif, Taki-Eddine;Batiha, Iqbal M.;Ouannas, Adel
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.679-689
    • /
    • 2022
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.