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STABILITY OF FRACTIONAL-ORDER NONLINEAR

SYSTEMS DEPENDING ON A PARAMETER

Abdellatif Ben Makhlouf, Mohamed Ali Hammami, and Khaled Sioud

Abstract. In this paper, we present a practical Mittag Leffler stability
for fractional-order nonlinear systems depending on a parameter. A suf-
ficient condition on practical Mittag Leffler stability is given by using a
Lyapunov function. In addition, we study the problem of stability and
stabilization for some classes of fractional-order systems.

1. Introduction

The fractional order dynamical systems have attracted remarkable attention
in the last decade. Many dynamic systems are better characterized by a dy-
namic model of fractional order, usually based on the concept of differentiation
or integration of fractional order.

It is usually known that several physical systems are characterized by frac-
tional-order state equations ([16]), such as, fractional Langevin equation ([3]),
fractional Lotka-Volterra equation ([10]) in biological systems, fractional-order
oscillator equation ([29]) in damping vibration, in anomalous diffusion and so
on. Particularly, stability analysis is one of the most fundamental issues for
systems. In this few years, there are many results about the stability and
stabilization of fractional order systems ([4, 5, 6, 7, 11, 12, 13, 17, 18, 21, 23,
25, 27, 30]).

The problem of stability and stabilization for nonlinear integer-order dy-
namic systems is many studied in literature ([2, 9, 15, 20, 22, 28, 31]). One
type of stability studied, deals with the so called practical stability, this notion
was studied in ([1, 14]). In the present paper, we introduce the notion of prac-
tical stability of nonlinear fractional-order systems depending on a parameter,
called ε∗ practical Mittag Leffler stability. This stability ensures the Mittag
Leffler stability of a ball containing the origin of the state space, the radius of
the ball can be made arbitrarily small. Our goal is to investigate the practi-
cal Mittag Leffler stability of nonlinear fractional-order systems depending on
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a parameter by using the Lyapunov techniques. Precisely we give sufficient
conditions that ensures the practical Mittag Leffler stability of such systems.

The paper is organised as follows. In Section 2, some necessary definitions
and lemmas are presented. In Section 3 a sufficient condition on practical
Mittag Leffler stability of nonlinear fractional differential equations is given. In
addition, some other classes of perturbed fractional systems are studied in point
of view stability and a continuous feedback controller is proposed to stabilize
a large class of nonlinear fractional dynamical systems with uncertainties.

2. Preliminaries

In this section, some definitions, lemmas and theorems related to the frac-
tional calculus are given.

In the literature, there are many definitions for fractional derivative ([17,
26]). In this paper we adopt the definition of Caputo fractional derivative.

Definition. The Riemann-Liouville fractional integral of order α > 0 is defined
as,

Iαt0x(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1x(τ)dτ,

Γ(α) =

∫ +∞

0

e−ttα−1dt,

where Γ is the Gamma function generalizing factorial for non-integer argu-
ments.

Definition. The Caputo fractional derivative is defined as,

CDα
t0,t
x(t) =

1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1 d
m

dτm
x(τ)dτ, (m− 1 < α < m).

When 0 < α < 1, then the Caputo fractional derivative of order α of f
reduces to

(2.1) CDα
t0,t
x(t) =

1

Γ(1− α)

∫ t

t0

(t− τ)−α d

dτ
x(τ)dτ.

On the other hand, there exists a frequently used function in the solution of
fractional order systems named the Mittag Leffler function. Indeed, the pro-
posed function is a generalization of the exponential function. In this context,
the following definitions and lemmas are presented.

Definition. The Mittag-Leffler function with two parameters is defined as

Eα,β(z) =
+∞
∑

k=0

zk

Γ(kα+ β)
,

where α > 0, β > 0, z ∈ C. When β = 1, one has Eα(z) = Eα,1(z), further-
more, E1,1(z) = ez.
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Lemma 2.1 ([24]). For 0 < α < 1, we have Eα(−t) is nonincreasing in t.

We consider the nonhomogeneous linear fractional differential equation with
Caputo fractional derivative

(2.2)
CDα

t0,t
x(t) = λx+ h(t), t ≥ t0

x(t0) = x0,

The solution of (2.2) is given by

x(t) = x0Eα(λ(t− t0)
α) +

∫ t

t0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds.(2.3)

Lemma 2.2 ([8]). If one sets h(t) = d in (2.2) with a constant d, then the

solution of (2.3) reduces to

x(t) = x0Eα(λ(t− t0)
α) + d(t− t0)

αEα,α+1(λ(t − t0)
α).(2.4)

Lemma 2.3 ([8]). Let 0 < α < 1 and |arg(λ)| > πα
2 . Then, one has

tαEα,α+1(λt
α) = −

1

λ
−

1

Γ(1− α)λ2tα
+O

( 1

λ3t2α

)

as t→ ∞.

Lemma 2.4 ([8]). Suppose that

CDα
t0,t
m(t) ≤ λm(t) + d, m(t0) = m0, t ≥ t0 ≥ 0,

where λ, d ∈ R. Then, one has

m(t) ≤ m(t0)Eα

(

λ(t− t0)
α
)

+ d(t− t0)
αEα,α+1

(

λ(t− t0)
q
)

, t ≥ t0 ≥ 0.

Moreover if λ < 0, then

m(t) ≤ m(t0)Eα

(

λ(t− t0)
α
)

+M d, t ≥ t0 ≥ 0,

where M = sup
s≥0

(

sαEα,α+1

(

λsα
)

)

.

Remark 2.5. Authors in ([8]) studied the boundedness of solutions for fractional
differential equations by using the previous lemma and the Lyapunov function.

Lemma 2.6 ([13]). Let x be a vector of functions. Then, for any time instant

t ≥ t0, the following relationship holds

1

2
CDα

t0,t
(xT (t)Px(t)) ≤ xT (t)P CDα

t0,t
x(t), ∀α ∈ (0, 1), ∀t ≥ t0

where P ∈ R
n×n is a constant, square, symmetric and positive definite matrix.

Lemma 2.7. For all p ≥ 1 and a, b ≥ 0, we have (a+ b)p ≤ 2p−1(ap + bp) and

(a+ b)
1

p ≤ (a
1

p + b
1

p ).
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3. Stability of fractional differential equations depending on

a parameter

Consider a parameterized family of fractional differential equations with a
Caputo derivative for 0 < α < 1 having the following form:

CDα
t0,t
x(t) = f(t, x, ε), t ≥ t0

x(t0) = x0,

where t0 ∈ R+, ε ∈ R
∗

+, x(t) ∈ R
n, f(·, ·, ε) : R+ × R

n −→ R
n is continuous

and locally Lipschitz in x.
The goal of the paper is to study the ε∗-practical Mittag Leffler stability of

certain classes of form of (3.1).

Definition. The system (3.1) is said to be

• ε∗-uniformly practically Mittag Leffler stable if for all 0 < ε ≤ ε∗ there
exist positive scalars K(ε), λ(ε) and ρ(ε) and such that the trajectory
of (3.1) passing through any initial state xε(t0) at any initial time t0
evaluated at time t satisfies:

(3.1) ‖xε(t)‖ ≤
[

K(ε)m
(

xε(t0)
)

Eα

(

− λ(ε)(t − t0)
α
)

]b

+ ρ(ε), ∀t ≥ t0 ≥ 0,

with b > 0, ρ(ε) −→ 0 as ε −→ 0+ and there exist K, λ1, λ2 > 0
such that λ1 ≤ λ(ε) ≤ λ2, 0 < K(ε) ≤ K for all ε ∈]0, ε∗], m(0) = 0,
m(x) ≥ 0 and m is locally Lipschitz.

• Uniformly Mittag Leffler stable if (3.1) is satisfied with ρ = 0.

Proposition 3.1. Let p ≥ 1 and ε∗ > 0. Assume that for all 0 < ε ≤ ε∗, there

exists a continuously differentiable function Vε : R+ × R
n −→ R, a continuous

function µ : R+ −→ R+ and positive constants scalar a1(ε), a2(ε), a3(ε), r1(ε)
and r2(ε) such that

(1)

(3.2) a1(ε)‖x‖
p ≤ Vε(t, x) ≤ a2(ε)‖x‖

p + r1(ε), ∀t ≥ 0, x ∈ R
n,

(2)

(3.3) CDα
t0,t
Vε(t, xε(t)) ≤ −a3(ε)‖xε(t)‖

p + µ(t)r2(ε), ∀t ≥ t0,

with

• ∀ε ∈]0, ε∗], a3(ε)
a2(ε)

≥ λ and 0 < a2(ε)
a1(ε)

≤ K, with λ, K > 0.

• t 7→

∫ t

0

(t− s)α−1Eα,α

(

− λ(t− s)α
)

µ(s)ds is a bounded function.

• c(ε) → 0 as ε→ 0+ where

c(ε) = r1(ε)
(a2(ε) +Ma3(ε))

a1(ε)a2(ε)
+ r2(ε)

M

a1(ε)
,
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with, M =M1 +M2, where

M1 = sup
s≥0

(

sαEα,α+1

(

− λsα
)

)

and

M2 = sup
t≥0

∫ t

0

(t− s)α−1Eα,α

(

− λ(t − s)α
)

µ(s)ds.

Then, the system (3.1) is ε∗-uniformly practically Mittag Leffler stable.

Proof. Let us consider t0 ≥ 0. It follows from (3.2) and (3.3) that

(3.4)
CDα

t0,t
Vε(t, xε(t)) ≤ −

a3(ε)

a2(ε)
Vε(t, xε(t)) + ρ(t)l(ε)

≤ −λVε(t, xε(t)) + ρ(t)l(ε), ∀t ≥ t0,

where ρ(t) =
(

1 + µ(t)
)

and l(ε) = r2(ε) +
r1(ε)a3(ε)

a2(ε)
.

There exists a nonnegative function h(t) satisfying:

CDα
t0,t
Vε(t, xε(t)) = −λVε(t, xε(t)) + ρ(t)l(ε)− h(t).(3.5)

It follows from (2.3) that

(3.6)

Vε(t, xε(t)) = Eα

(

− λ(t− t0)
α
)

Vε(t0, xε(t0))

+

∫ t

t0

(t− s)α−1Eα,α

(

− λ(t− s)α
)

(

ρ(s)l(ε)− h(s)
)

ds.

We have
∫ t

t0

(t− s)α−1Eα,α

(

− λ(t− s)α
)

h(s)ds ≥ 0,

then,

(3.7)

Vε(t, xε(t)) ≤ Eα

(

− λ(t− t0)
α
)

Vε(t0, xε(t0))

+ l(ε)

∫ t

t0

(t− s)α−1Eα,α

(

− λ(t− s)α
)

ρ(s)ds.

Hence,

Vε(t, xε(t)) ≤ Eα

(

− λ(t− t0)
α
)

Vε(t0, xε(t0)) +Ml(ε), ∀ t ≥ t0.(3.8)

By (3.2) we have:
(3.9)

‖xε(t)‖
p ≤

1

a1(ε)
Eα

(

−λ(t−t0)
α
)(

a2(ε)‖xε(t0)‖
p+r1(ε)

)

+
Ml(ε)

a1(ε)
, t ≥ t0 ≥ 0.

It follows from Lemma 2.1 Eα

(

− λsα
)

≤ 1, ∀s ≥ 0, so

(3.10) ‖xε(t)‖
p ≤

a2(ε)

a1(ε)
Eα

(

− λ(t− t0)
α
)

‖xε(t0)‖
p + c(ε) , t ≥ t0 ≥ 0.
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Hence, from Lemma 2.7 we obtain

(3.11) ‖xε(t)‖ ≤
[a2(ε)

a1(ε)
Eα

(

− λ(t− t0)
α
)

‖xε(t0)‖
p
]

1

p

+ r(ε) , t ≥ t0 ≥ 0

with r(ε) = c(ε)
1

p . Hence, the system (3.1) is ε∗-uniformly practically Mittag
Leffler stable. �

3.1. Stability for a class of perturbed systems

In this section, we consider a perturbed system:

(3.12) CDα
t0,t
x(t) = Ax(t) + g(t, x(t), ε), x(t0) = x0,

where, 0 < α < 1, x(t) ∈ R
n, A ∈ R

n×n is a constant matrix and g(t, x(t), ε) ∈
R

n.
Consider the following assumption:

(H) The perturbation term g(t, x(t), ε) satisfies, for all t ≥ 0, ε > 0 and x ∈ R
n

(3.13) ‖g(t, x, ε)‖ ≤ δ1(ε)ν(t) + δ2(ε)‖x‖,

such that δ1(ε), δ2(ε) > 0 and δ1(ε), δ2(ε) → 0 as ε→ 0+ and ν is a nonneg-
ative continuous function. Then, we have the following theorem:

Theorem 3.2. Suppose (H) holds, the system (3.12) is ε1-uniformly practi-

cally Mittag Leffler stable for some ε1 > 0 if there exists a symmetric and

positive definite matrix P , η > 0 and λ ∈]0, η[ such that

(3.14) ATP + PA+ ηI < 0,

and

t 7→

∫ t

0

(t− s)α−1Eα,α

(

−
(η − λ)

λmax(P )
(t− s)α

)

ν2(s)ds is a bounded function.

Proof. It follows from (3.13) that:

(3.15)
2xTPg(t, x, ε) ≤ 2‖x‖‖P‖‖g(t, x, ε)‖

≤ 2‖x‖‖P‖
(

δ1(ε)ν(t) + δ2(ε)‖x‖
)

.

Let 0 < λ1 < λ, we have

(3.16) 2‖x‖‖P‖δ1(ε)ν(t) ≤ λ1‖x‖
2 +

‖P‖2δ1(ε)
2ν2(t)

λ1
.

Substituting (3.16) into (3.15) yields

2xTPg(t, x, ε) ≤
(

λ1 + 2δ2(ε)‖P‖
)

‖x‖2 +
‖P‖2δ1(ε)

2ν2(t)

λ1
.

Since δ2(ε) → 0 as ε→ 0+ then there exists ε1 > 0 such that for all ε ∈]0, ε1],
2δ2(ε)‖P‖+ λ1 < λ.

Then, ∀ε ∈]0, ε1], we have

(3.17) 2xTPg(t, x, ε) ≤ λ‖x‖2 +
‖P‖2δ1(ε)

2ν2(t)

λ1
.
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Let ε ∈]0, ε1]. Choose a Lyapunov function V (t, x) = xTPx.
It follows from Lemma 6 that:

(3.18)

CDα
t0,t
V (t, xε(t)) ≤ 2xε(t)

TPCDα
t0,t
xε(t)

≤
[

Axε + g(t, xε, ε)
]T
Pxε + xTε P

[

Axε + g(t, xε, ε)
]

≤ xTε
(

ATP + PA
)

xε(t) + 2xTε Pg(t, xε, ε).

By (3.17) and (3.18) we have

CDα
t0,t
V (t, xε(t)) ≤ xε(t)

T
(

ATP + PA
)

xε(t) + λ‖xε(t)‖
2 +

‖P‖2δ1(ε)
2ν2(t)

λ1
.

Hence by (3.14),

CDα
t0,t
V (t, xε(t)) ≤ −η2‖xε(t)‖

2 +
‖P‖2δ1(ε)

2ν2(t)

λ1
,

with η2 = η − λ.

Then, all hypothesis of Proposition 1 are satisfied. Therefore, the system
(3.12) is ε1-uniformly practically Mittag Leffler stable. �

Example 3.3. Consider the following fractional system:

(E)

{

CDα
0,tx1 = −2x1 + x2 + εe−tx1 + ε2 1

1+t2
CDα

0,tx2 = x1 − x2 + εe−tx2 + ε2 2t
1+t2

where, 0 < α < 1 and x(t) =
(

x1(t), x2(t)
)

∈ R
2.

This system has the same from of (3.12) with

A =

(

−2 1
1 −1

)

and

g(t, x, ε) = εe−t(x1, x2) + (
ε2

1 + t2
,
2ε2t

1 + t2
).

The perturbed term g satisfies (H) with δ1(ε) = ε2, δ2(ε) = ε and ν(t) =
√
2.

Select P = 2I, since

ATP + PA+ I =

(

−7 4
4 −3

)

< 0,

then, the assumptions of Theorem 3.2 are satisfied.
We have η = 1, we choose λ = 3

4 and λ1 = 1
2 . So, 2ε‖P‖+λ1 < λ, ∀ε ∈ (0, ε1]

with 0 < ε1 <
1
16 . Hence, the system (E) is ε1-uniformly practically Mittag

Leffler stable. Note that in this case, the state approaches the origin, for some
sufficiently small ε, when t tends to infinity.
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Figure 1. Time evolution of the state x1(t) of system (E)
with ε = 0.01
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Figure 2. Time evolution of the state x2(t) of system (E)
with ε = 0.01

3.2. Practical Mittag Leffler stability of a class of nonlinear fractional

differential equations with uncertainties

In this section we discuss the problem of stabilization for a class of nonlinear
fractional-order systems with uncertainties.

Consider the system

(3.19) CDα
t0,t
x(t) = Ax+B

(

φ(x, u) + u
)

,
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where x ∈ R
n, u ∈ R

q, A and B are respectively (n × n), (n × q) constant
matrices, φ : Rn × R

q −→ R
q.

Assume that the following assumptions are satisfied:
(H1) There exist a symmetric and positive definite matrix P and η > 0 such
that the following inequality holds:

(3.20) ATP + PA+ ηI < 0.

(H2) There exists a nonnegative continuous function ψ : Rn −→ R such that:

(3.21) ‖φ(x, u)‖ ≤ ψ(x), ∀x ∈ R
n, ∀u ∈ R

q.

Theorem 3.4. Suppose that assumptions (H1), (H2) hold, then the feedback

law

(3.22) u(ε, x) = −
BTPxψ(x)2

‖BTPx‖ψ(x) + ρ(ε)
,

where ρ(ε) → 0 as ε → 0+, ρ(ε) > 0, ∀ε > 0, uniformly practically Mittag

Leffler stabilizes the system (3.19).

Proof. Choose a Lyapunov function V (t, x) = xTPx. It follows from Lemma
2.6 that:

CDα
t0,t
V (t, xε(t)) ≤ 2xε(t)

TPCDα
t0,t
xε(t)

≤ 2xTε P
[

Axε +B
(

φ(xε, u) + u
)]

≤ xTε
(

ATP + PA
)

xε −
2xTε PBB

TPxεψ(xε)
2

‖BTPxε‖ψ(xε) + ρ(ε)
(3.23)

+ 2xTε PBφ(xε, u).

Thus, by (H1) and (H2) we have

CDα
t0,t
V (t, xε(t)) ≤ −η‖xε‖

2 −
2xTε PBB

TPxεψ(xε)
2

‖BTPxε‖ψ(xε) + ρ(ε)
+ 2‖BTPxε‖ψ(xε)

≤ −η‖xε‖
2 +

2‖BTPxε‖ψ(xε)ρ(ε)

‖BTPxε‖ψ(xε) + ρ(ε)
.(3.24)

Using the following inequality

‖BTPxε‖ψ(xε)ρ(ε)

‖BTPxε‖ψ(xε) + ρ(ε)
≤ ρ(ε),

then,

(3.25) CDα
t0,t
V (t, xε(t)) ≤ −η‖xε(t)‖

2 + 2ρ(ε).

Hence, all hypothesis of Proposition 3.1 are satisfied. Therefore the uncertain
closed-loop dynamical system (3.19) is ε∗-uniformly practically Mittag Leffler
stable for some ε∗ > 0. �
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Figure 3. Time evolution of the state x1(t) of system (E′)
with ε = 0.1

Example 3.5. Consider the following fractional system:

(E′)

{

CDα
0,tx1 = −4x1 + 2x2 + u+ cos(u)x2

CDα
0,tx2 = 2x1 − 3x2

where, 0 < α < 1, x(t) =
(

x1(t), x2(t)
)

∈ R
2.

This system has the same from of (3.19) with A =
(

−4 2
2 −3

)

, B = ( 10 ),
φ(x, u) = cos(u)x2.

Select P = 2I, since

ATP + PA+ I =

(

−15 8
8 −11

)

< 0,

then, the assumptions of Theorem 3.4 are satisfied. Hence, we obtain the ε∗-
practical Mittag Leffler stability of the closed loop fractional-order system (E′)
for some ε∗ > 0 with

u =
2x1x

2
2

2|x1x2|+ ε2
.

4. Conclusion

In this paper, we have introduced a notion of practical Mittag Leffler stability
for fractional differential equations depending on a parameter. Sufficiently
conditions are given by using Lyapunov theory. These results are applied to
the analysis of some fractional systems.
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Figure 4. Time evolution of the state x2(t) of system (E′)
with ε = 0.1
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