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ABSTRACT. In this paper, an integro-differential equation which arises in oscillating magnetic
fields is studied. The generalized fractional order Chebyshev orthogonal functions (GFCF)
collocation method used for solving this integral equation. The GFCF collocation method can
be used in applied physics, applied mathematics, and engineering applications. The results of
applying this procedure to the integro-differential equation with time-periodic coefficients show
the high accuracy, simplicity, and efficiency of this method. The present method is converging
and the error decreases with increasing collocation points.

1. INTRODUCTION

In this section, Spectral methods and some basic definitions and theorems which are useful
for our method have been introduced.

1.1. Spectral methods. Spectral methods have been developed rapidly in the past two decades.
They have been successfully applied to numerical simulations in many fields, such as heat con-
duction, fluid dynamics, quantum mechanics, etc. These methods are powerful tools to solve
differential equations. The key components of their formulation are the trial functions and the
test functions. The trial functions, which are the linear combinations of suitable trial basis
functions, are used to provide an approximate representation of the solution. The test functions
are used to ensure that the differential equation and perhaps some boundary conditions are sat-
isfied as closely as possible by the truncated series expansion. This is achieved by minimizing
the residual function that is produced by using the truncated expansion instead of the exact
solution with respect to a suitable norm [1, 2, 3,4, 5,6, 7, 8,9, 10].
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1.2. Basical definitions. In this section, some basic definitions and theorems which are useful
for our method have been introduced [11].

Definition 1. For any real function f(t), ¢ > 0, if there exists a real number p > p, such that
f(t) =P fi(t), where fi(t) € C(0,00), is said to be in space C,,, u € R, and it is in the space
Cy ifand only if f" € €y, n € N.

Definition 2. The fractional derivative of f(¢) in the Caputo sense by the Riemann-Liouville
fractional integral operator of order o > 0 is defined as [12, 13]:

DOF() = )/O(t—s)m—a—lpmf(s) ds, a > 0,

I'im—a«
form—1<a<m, meN,t>0,misthe smallest integer greater than o, and f € C"".
Some properties of the operator D are as follows. For f € C,,, u > =1, a, 6 > 0, v > —1,
No=1{0,1,2,--- } and constant C":

(i) DC =0,
(it) DD f(t) = D0 f(1), (1.1)
0, v € Ny and 7y < [a],
i) D=9 (1.2)
F—atn?’ “ 7 € Noand v > [a] or v ¢ N and v > |,
(1) D*() _cifi(t)) = > D fi(t), where ¢; € R. (1.3)
i=1 i=1

Definition 3. Suppose that f(t), g(t) € C|[0, n] and w(t) is a weight function, then

£ 12 = /f2
SO, = / (gt (t)dt
0

Theorem 1. (Generalized Taylor’s formula) Suppose that f(t) € C[0,7] and D* f(t) €
C[0,n], where k = 0,1,...,m, 0 < a < 1 and n > 0. Then we have

m—1

_ tia io n e o
f(t) = ; Fiat )2 O F fia P E): (14)
with 0 < § <, Vt € [0,7n]. And thus
m—1 ;
Lf(t) = ;wD fO7)] SMam, (1.5)

where M, > | D™ f(&)].
Proof: See Ref. [14].

The organization of the paper is expressed as follows: in section 2, the mathematical prelim-
inaries to the problem is expressed. In section 3, the GFCFs and their properties are obtained.
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In section 4, the work method is explained. Applications of the proposed method are shown in
section 5. Finally, a brief conclusion is given in the last section.

2. MATHEMATICAL PRELIMINARIES

The integro-differential equation [15, 16]

d2y t

T = a0) = a0(®) +00) [ costuu(s)ds @1
where a(t), b(t) and g(t) are given periodic functions of time may be easily found in the
charged particle dynamics for some field configurations. Taking for instance the three mutu-
ally orthogonal magnetic field components B, = B; sin(wpt), By = 0, B, = By, the nonrel-
ativistic equations of motion for a particle of mass m and charge ¢ in this field configuration

are
m% = q <Bo%> , (2.2)
mi;g = q (Bl sin(wpt)% — BOCZ> ) (2.3)
m% = gq <—B1 sin(wﬂ)i—i) . (2.4)

By integration of (2.2) and (2.4) and replacement of the time first derivatives of z and x in (2.3)
one has (2.1) with

a(t) = w? + w?c sin?(wyt), b(t) = wfcwp sin(wpt), (2.5)
g(t) = wy sin(wpt) 2’ (0) + w2y(0) + wea'(0), (2.6)

where w. = ¢By/m and wy = ¢Bi/m. Making the additional simplification that ' (0) = 0
and y(0) = 0, equation (2.1) is finally written as [16]

% =wy sin(wpt)z’(O) - (wg + wfc sinZ(wpt)) y(t)
+ (w?cwp sin(wpt)) /t cos(wps)y(s)ds (2.7)
In this study, we consider the equation (2.1) with the ?ollowing initial conditions
y(0)=po,  ¥'(0) =5 (2.8)

There are methods to solve this equation, such as, He’s Homotopy perturbation method [16],
Chebyshev wavelet [17], Legendre multi-wavelets [18], Local polynomial regression [19],
Shannon wavelets [20], Variational iteration method [21] and Homotopy analysis method [22].

In this paper, we attempt to introduce a new method based on the generalized fractional
order Chebyshev orthogonal functions (GFCFs) of the first kind for solving the equation (2.1)
with the initial conditions (2.8).
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3. THE GENERALIZED FRACTIONAL ORDER CHEBYSHEV FUNCTIONS

In this section, first, the generalized fractional order of the Chebyshev functions (GFCF)
have been defined, and then some properties and convergence of them for our method have
been introduced.

3.1. The Chebyshev functions. The Chebyshev polynomials have been used in numerical
analysis, frequently, including polynomial approximation, Gauss-quadrature integration, inte-
gral and differential equations and spectral methods. Chebyshev polynomials have many prop-
erties, for example orthogonal, recursive, simple real roots, complete in the space of polyno-
mials. For these reasons, many researchers have employed these polynomials in their research
[23, 24, 25, 26, 27, 28].

Using some transformations, the number of researchers extended Chebyshev polynomials to
semi-infinite or infinite domains, for example by using = = i;—i, L > 0 the rational functions
introduced [29, 30, 31, 32, 33, 34].

In the proposed work, by transformation z = 1—2( % )¢, o > 0 on the Chebyshev polynomi-
als of the first kind, the fractional order of the Chebyshev orthogonal functions in the interval
[0, ] have been introduced, that they can use to solve these integro-differential equations.

3.2. The GFCFs definition. The efficient methods have been used by many researchers to
solve the differential equations (DE) is based on the series expansion of the form »" , ¢;t’,
such as Adomian decomposition method [35] and Homotopy perturbation method [36]. But
the exact solution of many DEs can’t be estimated by polynomial basis. Therefore, we have
defined a new basis for Spectral methods to solve them as follows:
n
B, (t) = Z et
i=0

Now by transformation z = 1—2( % ), a, > 0 on classical Chebyshev polynomials of the first
kind, we defined the GFCFs in the interval [0, 7], that be denoted by , F'T)5 (t) = T),(1 —2(%)“).
By this definition, the singular Sturm-Liouville differential equation of classical Chebyshev
polynomials become:

VN =t d [/n¥—ted

ol e EnFTﬁ(t)} +n?a® ,FT2(t) =0, te[0,n). (3.1

The ,F'T(t) can be obtained using the recursive relation as follows (n = 1,2,---):

DTS =1, G FTR() =1-2(1)%,
DFTE () = (2 - 4(1)%) JFTS() — 4 FTE ().

The analytical form of , F'T)%(t) of degree no is given by

- n 2k n — .
TR0 = S e

k=0 g
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n
= > Bukmat™, t€[0,n), (32)
k=0
where o
n2**(n+k —1)!
/Bn7k7777a = (_1)k ( )k?
(n — k)!(2k)In>
Note that , FT(0) = 1 and , FT,%(n) = (—1)".
The GFCFs are orthogonal with respect to the weight function w(t) = \/% in the interval
[0, n]:

and Bo k. p.a = 1.

n
/ ZFTO () FTE (t)w(t)dt = 21cn5mn. (3.3)
0 (6%

where d,,, is Kronecker delta, cg = 2, and ¢,, = 1 for n > 1. Eq. (3.3) is provable using
properties of orthogonality in the Chebyshev polynomials.
Figs. 1 shown graphs of GFCFs for various values of n and o and np = 5.
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FIGURE 1. (a) Graph of the GFCFs with o« = 0.25 and various values of n.
(b) Graph of the GFCFs with n = 5 and various values of «.

3.3. Approximation of functions. Any function y(¢) € C|0, 7] can be expanded as follows:

y(t) = an o FT3 (),
n=0

where the coefficients a,, obtain by inner product:

W) o F T 0w = (D an oFT3 (1), oF T3 ()
n=0
and using the property of orthogonality in the GFCFs:
n
/0 o FT()y(t)w(t)dt, n=0,1,2,--- .

2a
ap = ——

Ty
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In practice, we have to use first m-terms GFCFs and approximate y(¢):

m—1
Y(t) = ym(t) = Y an o FT3(t) = AT®(t), (3.4)
n=0
with
A = Jag,a1, - am1]t, (3.5)
o) = [BFT5(t), oFT{ (), oF T ()] (3.6)

3.4. Convergence of the method. The following theorem shows that by increasing m, the
approximation solution f,,(¢) is convergent to f(¢) exponentially.

Theorem 2. Suppose that D**f(t) € C[0,n] for k = 0,1,...,m, and ,F is the subspace
generated by {,, FT§(t),, FT(t), -+ FT2_,(t)}. If fo, = AT® (in Eq. (3.4)) is the best
approximation to f(t) from , F, then the error bound is presented as follows

7™M, p
T(ma+1)\ a.m!’

H f(t) - fm(t) ”wS om
where M, > | D™ f(t)|, t € [0,n].

Proof. By theorem 1,y = 37! %Di"f(w“) and
tma
t)—ylt)| < My=————

since AT®(¢) is the best approximation to f(t) in ,F andy € ,F<, one has

1@ = fa®) 1% < £ —y@) %
M2 n t%+2ma71
. dt
T(ma + 1)2 /0 VN —to
M?2 772m047r
(e}
T(ma + 1) a22mm!’

Now by taking the square roots, the theorem can be proved. l

<

Theorem 3. The generalized fractional order of the Chebyshev function , F'T*(t), has pre-
cisely n real zeros on interval (0,7) in the form

1
1 — cos(2E=Dm\\ &
th”( (2 ) s k=12, ,n.

Moreover, %nF T%(t) has precisely n — 1 real zeros on interval (0, n) in the following points:

1
1 — cos(Em)\ @
%:n(ms(n)) E=12 el
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Proof. The Chebyshev polynomial T}, (z) has n real zeros [37, 38]:

2k — 1
xk—cos(g>, k=1,2,--- ,n,
2n

therefore 7, (x) can be written as

Th(x) = (x —x1)(x —22) - (T — Tp).

Using transformation v = 1 — 2(%)0‘ yields to
[0} t e t e t «
FT() = (0 =2(2)%) = 2)((1 = 2()%) = x2) -~ (1 = 2()%) — ),
n n n
so, the real zeros of ,, F'T}*(t) are tj, = n( 1*2"”’6)5
Also, the real zeros of %Tn(t) occurs in the following points [37]:
k
T, = cos(—ﬂ), k=1,2,---,n—1.
n
Same as in previous, the absolute extremes of , FT)%'(t) are ¢}, = (1_;;“ ) e |

4. APPLICATION OF THE GFCF COLLOCATION METHOD

In this section, the GFCFs collocation method is applied to solve the integro-differential
equation in the Eq. (2.1).
For satisfying the boundary conditions, the conditions in the Eq. (2.8) are satisfied as follows:

Im(t) = Bo + Bi t +1* ym(t), (4.1)

where %,,,(t) is defined in the Eq. (3.4). Now, 7, (t) = (o and #,, (t) = B when ¢ tends to
zero, so the conditions in the Eq. (2.8) are satisfied.
To apply the collocation method, the residual function is constructed by substituting 7, (¢)
in the Eq. (4.1) for y(t) in the integro-differential equation (2.1):
d2 y t
Res(t) = pr g(t) +a(t)y(t) — b(t)/o cos(wps)y(s)ds. (4.2)

The equations for obtaining the coefficient {ai}?lf)l arise from equalizing Res(t) to zero on
m collocation points:

Res(t;) =0, i=0,1,...m—1. 4.3)
In this study, the roots of the GFCFs in the interval [0, 7] (Theorem 3) are used as collocation
points. By solving the obtained set of equations, we have the approximating function g, (¢).

And also consider that all of the computations have been done by Maple 18 on a laptop with
CPU Core 17, Windows 8.1 64bit, and 8 GB of RAM.
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5. ILLUSTRATIVE EXAMPLES

In this section, by using the present method, some well-known examples are solved to show
efficiently and applicability GFCFs method based on Spectral method. The present method is
applied to solve the integro-differential equation (2.1) and their outputs are compared with the
corresponding analytical solution. These examples studied also by Dehghan [16], Khan [18]
and Pathak [21], we will compare our results with their results to show the effectiveness of the
present method.

Example 1. Consider the equation (2.1) with [16, 18, 21]

wp =2, a(t) =cos(t), b(t)=sin(t/2), Lo=1, 1 =0
g(t) = cos(t) — tsin(t) 4 cos(t) (tsin(t) + cos(t))

—sin(t/2) gsin(?;t) - Ecos(?:t) + Ecos(t) .
9 6 2

The exact solution of this equation is y(¢f) = t¢sin(t) + cos(t). By applying the technique
described in the last section, for satisfying the boundary conditions, the conditions are satisfied
as Ym (t) = 1+ t2 y,,,(t). The residual function is constructed as follows:

2

Res(t) = % —g(t) +alt)y(t) — b(t)/o cos(wps)y(s)ds.

Therefore, to obtain the coefficient {a;}7"'; Res(t) is equalized to zero at m collocation point.
By solving this set of nonlinear algebraic equations, we can find the approximating function
Um(t). Figure 2 shows the logarithmic graph of the absolute error and the residual error of the
approximate solution and the analytic solution for m = 20 and o = 0.50.

1077
-114
1o 1_x10“"lmmm
5.% 10710
10—12,
107134 1.x10-10
5.x 10114
‘0—14,
10-15 1.x 101"
5.% 10712
0 1 2 3 4 5 0 1 2 3 4 5
t t
(a) (b)

FIGURE 2. The logarithmic graphs of the absolute error and the residual error
for example 1 with m = 20 and o = 0.50. Graph of the (a) absolute, (b)
residual error.
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The resulting graph in comparison to the presented method and the exact solution is shown
in Figure 3(a). In Figure 3(b) to show the convergence of the present method, we showed that
by increasing the m the residual function decreases, where ov = 0.50.

L ///’_ \\ ]0737"‘::; .o
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3 ‘ 10-104 ||| [ ‘ ’ | | | L N
\ o-nd g | '
N 5 7 3 3 7 3
N 1
""" approximate — — exact] | eer-m=10 —— m=15 — -— m:20|
(a) (b)

FIGURE 3. (a) Obtained graph in comparison to the exact solution with m =
20 and o = 0.50. (b) Residual functions for m = 10, 15, 20 and o = 0.50,
to show the convergence rate of the GFCF method for example 1.

Table 1 compares the error norm ||y — y,||2 by the present method and Dehghan [16] for
examples 1-3.

TABLE 1. Comparison of error norm ||y — y;,||2 by Dehghan [16] and the
present method for examples 1-3

Example Dehghan [16] Present method

Example 1 6.826965141905116e-13  1.4691408679507079¢-20
Example 2 2.440936203513114e-13  8.8876680000000000e-39
Example 3 3.279510650660257e-12  2.6061709227703975e-95

Table 2 compares the obtained values of y(¢) by the present method and the values given by
Khan [18] (Legendre multi-wavelets) and Pathak [21] (Variational iteration method), it shows
that the results obtained in the present method are more accurate.
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TABLE 2. Obtained values of y(t) for example 1 by Khan, Pathak, and the
present method with m = 20.

t

Khan [18]

Pathak [21]

Present method

Exact Solution

Abs. Err.

Res. Err.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.006711649
1.019729643
1.043967189
1.078484444
1.116769872
1.164117090
1.216007719
1.270604841
1.326616801

1.004987505
1.019800356
1.043991584
1.076823090
1.117276231
1.164067124
1.215666930
1.270327190
1.326109990

1.004987506944
1.019800443994
1.043992551130
1.076828330937
1.117295331180
1.164121098922
1.215794568347
1.270591582096
1.326604186976

1.004987506942
1.019800444000
1.043992551124
1.076828330926
1.117295331192
1.164121098946
1.215794568350
1.270591582066
1.326604186935

1.997e-12
5.546¢-12
6.216e-12
1.072e-11
1.182e-11
2.436e-11
3.654¢-12
2.975e-11
4.096e-11

3.329¢-9
3.391e-9
1.032e-9
3.318e-9
1.190e-9
3.746e-9
1.388e-9
2.415e-9
3.827e-9

Example 2. Consider the equation (2.1) with [16, 18, 21]

wp, =1, a(t)=—sin(t), b(t)=sin(t), Bo=1, Bi1=2/3
g(t) = éefg — sin(¢ (e 3 —i—t)

— sin(t) (—% cos(t)e 3 +

o~
o~

9 7
o5 in(t)e” 3 + cos(t) + tsin(t) — E) .
€5 41, By applying the technique described in

The exact solution of this equation is y(t) =
Um(t) = 1+ 2t + % y,(t), and construct the

the last section, the conditions are satisfied as : ym(t)

residual functions as follows:
2

Ty _ (t) +a(t)y(t) — b(t)/o cos(wps)y(s)ds.

dt?
Figure 4 shows the logarithmic graph of the absolute error and the residual error of the approx-
imate solution and the exact solution for m = 20 and o« = 0.50.

Res(t) =

1. 10154

5. 10719

1.x10-1° 4

5. % 10-20 1

1.% 107204

5.x10°214

@

FIGURE 4. The logarithmic graphs of the (a) absolute error and the (b) resid-
ual error for example 2 with m = 20 and o = 0.50.
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The resulting graph in comparison to the present method and the exact solution is shown
in Figure 5 (a). To show the convergence of the present method to solve this example with
« = 0.50 in Figure 5 (b), we showed that by increasing the m the residual function decreases.
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FIGURE 5. (a) Obtained graph in comparison with the exact solution with
m = 20 and o = 0.50. (b) Residual functions for m = 10, 15,20 and o« =

0.50, to show the convergence rate of GFCF method for example 2.

Table 1 compares the error norm ||y — y,||2 by the present method and Dehghan [16] for
examples 1-3. Table 3 compares the obtained values of y(¢) by the present method and the
values given by Khan [18] (Legendre multi-wavelets) and Pathak [21] (Variational iteration

method), it shows that the results obtained in the present method are more accurate.

TABLE 3. Obtained values of y(¢) for example 2 by Khan (Legendre multi-
wavelets), Pathak (Variational iteration method), and the present method with

m = 20

t Khan [18] Abs. Err. Present method Exact Solution Abs. Res.

Pathak [21] Err. Err.
0.1 1.067409867 5.0900e-13  1.06721610048200590204  1.06721610048200590204  2.5¢-21 4.1e-18
0.2 1.135498873  1.3237e-10  1.13550698503161773772  1.13550698503161773773  6.6e-21 ~ 4.0e-18
0.3  1.204831254 3.4433e-09  1.20483741803595957317  1.20483741803595957316  6.8¢-21  1.le-18
0.4 1.275363888  3.4759e-08  1.27517331904294745400  1.27517331904294745399  1.2¢-20  3.7¢-18
0.5 1.346379637 2.0843e-07  1.34648172489061407403  1.34648172489061407404 1.2¢-20  1.2e-18
0.6 1.418729558 1.41873075307798185864  1.41873075307798185866  2.6e-20  3.9¢-18
0.7 1.491932333 1.49188956633678166437  1.49188956633678166437  5.1e-21  1.4e-18
0.8 1.565927886 1.56592833836464869274  1.56592833836464869271  2.8¢-20  2.4e-18
0.9 1.640830867 1.64081822068171786610  1.64081822068171786606  4.1e-20  3.8e-18
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Example 3. Consider equation (2.1) with [16, 18, 21]

wp=3, a(t)=1, b{t) = sin(t) +cos(t), fo =2, By = —5,
g(t) = —t3 +t* — 11t + 4 — (sin(t) + cos(t))

t3 t2 13 13

(—g sin(3t) — 3 cos(3t) — > cos(3t) — gt sin(3t)
t? 16 2t 13

+§ Sln(3t) + 277 Sln(3t) + 5 COS(3t) + 277),

The exact solution of this equation is y(t) = —t3 + 2 — 5t 4 2. By applying the technique
described in the last section, the conditions are satisfied as : ¥, (t) = 2 — 5t + t? y,,,(t). The

residual function is constructed as follows :
2

Res(t) = 2722} —g(t) +a(t)y(t) — b(t)/o cos(wps)y(s)ds.

Figure 6 shows the logarithmic graph of the absolute error and the residual error of the
approximate solution and the exact solution for m = 5 and a = 0.50.

10484 1% 10-48
5. % 10-49,
10-49
1.x 10-49,
10—50,
5.% 107304
10-5],
1. % 10—50,
10-524 5.% 10731
-53
10 1. % 10-5],
0 1 2 3 4 5 0 1 2 3 4 5
t t
(a) (b)

FIGURE 6. The logarithmic graphs of the (a) absolute error and the (b) resid-
ual error for example 2 with m = 5 and o = 0.50.
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The resulting graph in comparison to the present method and the exact solutions is shown in

Figure 7.

FIGURE 7. Obtained graph in comparison to the exact solution for example 3
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with m = 5 and o« = 0.50.

Table 1 compares the error norm ||y — y,||2 by the present method and Dehghan [16] for
examples 1-3. Table 4 compares the obtained values of y(¢) by the present method and the
values given by Khan [18] (Legendre multi-wavelets) and Pathak [21] (Variational iteration

method), it shows that the results obtained in the present method are more accurate.

TABLE 4. Obtained values of y(t) for example 3 by Khan, Pathak, and the

present method with m = 5.

t Khan [18] Abs. Err. Present Exact  Abs. Res.

Pathak [21] method Solution  Err. Err.
0.1 1.510232801 ——  1.50900000 1.509 0  4.331e-49
0.2 1.031768407  0.0000e-00  1.03200000 1.032 0  3.845e-50
0.3 0.563149603 ——  0.56300000 0.563 0  2.869e-49
0.4 0.096626905  1.5399¢-12  0.09600000 0.096 0  5.244e-49
0.5 -0.373166748 ——— -0.37500000 -0.375 0  6.837e-49
0.6 -0.856012437 4.1554e-11 -0.85600000  -0.856 0  7.799e-49
0.7 -1.353869376 ——— -1.35300000 -1.353 0  8.296e-49
0.8 -1.871984718 2.1376e-10 -1.87200000  -1.872 0  8.489e-49
0.9 -2.419488059 -2.41900000  -2.419 0  8.517e-49
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6. CONCLUSION

The main goal of this paper was to introduce a new orthogonal basis, namely the generalized
fractional order of the Chebyshev orthogonal functions (GFCF) to construct an approximation
to the solution of the integro-differential equation arising in oscillating magnetic fields. The
presented results show that the introduced basis for the collocation spectral method is efficient
and applicable. Our results have better accuracy with lesser m, and the absolute error as com-
pared to the exact solution. A comparison was made of the exact solution and the present
method. As shown, the method is converging and has an approximate accuracy and stability,
and the error decreases with increasing m.
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