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SOLVABILITY OF SOME NONLINEAR

INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL

ORDER VIA MEASURE OF NONCOMPACTNESS

Somayyeh Dadsetadi a Kazem Nouri b, ∗ and Leila Torkzadeh c

Abstract. In this article, we investigate the solvability of nonlinear fractional
integro-differential equations of the Hammerstein type. The results are obtained
using the technique of measure of noncompactness and the Darbo theorem in the
real Banach space of continuous and bounded functions in the interval [0, a]. At the
end, an example is presented to illustrate the effectiveness of the obtained results.

1. Introduction

The memory effecet and non-local properties of the non-integer order derivative

with the appropriate analytical supporting, lead to the fractional differential equa-

tion convert to excellent instrument for modelling the physical and real phenomena.

In fact, in many applications in engineering systems, fractional derivative-based ideas

describe better adaptive models than the ideas based on conventional derivatives.

Most recently, fractional calculations has been considered in the fields of applied sci-

ences such as control theory, dynamics, viscoelasticity, electromagnetic theory and

so on (for example, see [11,14,16] and the references therein).

Analytical investigations and numerical solutions of fractional differential equations

have always been of interest to researchers [1–6,9, 10,12,15,18,19,21,23–26]. In re-

cent years, many researchers have investigated the existence of a unique solution of

fractional integral and differential equations using the concept of a measure of non-

compactness on bounded and unbounded intervals. For example, in [8], Banas and

Zajac investigated solvability of a fractional integral equation in the class of func-

tions with limits at infinity. By utilizing the theory of fixed point and a technique of
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the measure of noncompactness, Gou and Li [13] investigated the existence of local

and global mild solution for an impulsive fractional functional integro-differential

equation with noncompact semi-group in the Banach space.

In this work, we study the existence and uniqueness of solution of the following

nonlinear fractional Volterra integro-differential equations of the Hammerstein type

in the Banach space BC([0, a]):

(1.1)

CDβ (ν(τ) + e(τ, ν(τ))) = g(τ, ν(τ))+ f

(
τ, ν(τ),

∫ τ

0
k(τ, s) H(ν(s))ds

)
, τ ∈ [0, a],

with the initial conditions

(1.2) ν(j)(0) = νj , j = 0, 1, ...,m− 1,

where 0 < a < ∞, m ∈ N and cDβ is the Caputos fractional derivative. The func-

tions e, g : [0, a] × R → R, f : [0, a] × R × R → R and k : [0, a] × [0, a] → R are

appropriate continuous functions satisfying given conditions to be defined later.

To achieve the main purpose of this work, using the technique of measure of non-

compactness and the Darbo theorem, we show that the problem (1.1) - (1.2) has

at least one solution in the real Banach space BC([0, a]) which are continuous and

bounded functions.

2. Preliminaries

In this section, we give some basic preliminaries which are used further in this

paper. First, we present some introductory concepts for fractional calculus (for more

details see [17,20,22]).

Definition 2.1. The Riemann-Liouville fractional integral of order β > 0 of a

function ν(τ), is defined as

(2.1) (Iβν)(τ) =
1

Γ(β)

∫ τ

0
(τ − µ)β−1 ν(µ)dµ, τ > 0,

where Γ is the Gamma function.

In this paper, we consider the definition of the Caputos derivative which is more

useful in real-life usages since it can be better able to model phenomena and be

consistent with the initial conditions of the problems.
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Definition 2.2. The Caputo derivative of fractional order β ≥ 0 for a function ν(τ)

is defined by (
CDβν

)
(τ) =

1

Γ(m− β)

∫ τ

0
(τ − µ)m−β−1 ν(m)(µ)dµ,

where m = [β] + 1 and [β] denotes integer part of the real number β.

If β = m ∈ N0 and the usual derivative ν(m)(τ) of orderm exists, then (CDmν)(τ)

coincides with ν(m)(τ). Also, this definition implies that CDβν(n)(τ) = CDβ+nν(τ)

and CDβc = 0 (c is a constant).

Propositon 2.3. Let β > 0 and m = [β] + 1. If ν(τ) ∈ Cm[0, a], then

(i)
(
Iβ CDβν

)
(τ) = ν(τ)−

∑m−1
j=0

ν(j)(0)

j!
τ j ,

(ii)
(
CDβ Iβν

)
(τ) = ν(τ).

Throughout this paper, we consider the Banach space BC([0, a]) with the norm

∥ . ∥ which is defined as follows:

∥ν∥ = sup {|ν(τ)| : τ ∈ [0, a]} .

Next we recall some basic facts concerning measures of noncompactness.

Suppose that S is an infinite dimensional Banach space with a norm ∥ . ∥. If M is

a subset of S then M and ConvM stand for the closure and convex closure of M ,

respectively. The family of all nonempty and bounded subsets of S will be shown

by MS and its subfamily consisting of all compact sets is denoted by NS .

Now we give the concept of a measure of noncompactness [7]:

Definition 2.4. A mapping η : MS −→ R+ is called the measure of noncompactness

in S if it has the following conditions:

1) The family kerη = {M ∈ MS : η(M) = 0} is nonempty and kerη ⊂ NS , the

kernel of the measure of noncompactnees η is called by kerη,

2) M ⊂ N ⇒ η(M) ≤ η(N),

3) η(M) = η(M),

4) η(ConvM) = η(M),

5) η(λM + (1− λ)N) ≤ λη(M) + (1− λ)η(N) for λ ∈ [0, 1],

6) If (Mn) is a sequence of closed sets from MS such that Mn+1 ⊂Mn (n = 1, 2, ...)

and if limn→∞ η(Mn) = 0, then the intersection M∞ =
∩∞

n=1Mn is nonempty.
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Theorem 2.5 ( [7]). Suppose Ψ be a nonempty, bounded, closed and convex subset

of the space S and let Φ : Ψ → Ψ be a continuous mapping. Suppose that there exists

a constant λ ∈ [0, 1) such that η(ΦM) ≤ λη(M) for any nonempty subset M of Ψ.

Then Φ has a fixed point in the set Ψ.

Now we introduce the definition of a special measure of noncompactness in

BC([0, a]) which will be used in this paper. Suppose M ∈ MBC([0,a]), ϵ > 0 and

ν ∈M . So the modulus of continuity of the function ν is defined by

ϖ(ν, ϵ) = sup {|ν(τ1)− ν(τ2)| : τ1, τ2 ∈ [0, a], |τ1 − τ2| ≤ ϵ} .

Also, let us put

ϖ(M, ϵ) = sup {ϖ(ν, ϵ) : ν ∈M} ,

ϖ0(M) = lim
ϵ→0

ϖ(M, ϵ).

It may be shown [7] that

η(M) =
1

2
ϖ0(M),

which η(M) is a regular measure of noncompactness in the space BC([0, a]).

3. Main Result

In this section, we investigate the solvability of the fractional integro-differential

equation (1.1). Since g and f are continuous, we can exert the operator Iβ to both

sides of Eq. (1.1). Thus using Proposition 2.3, we obtain

ν(τ) =

m−1∑
j=0

νj + e(j)(0, ν0)

j!
τ j − e(τ, ν(τ)) +

1

Γ(β)

∫ τ

0

g(s, ν(s))

(τ − s)1−β
ds(3.1)

+
1

Γ(β)

∫ τ

0

f(s, ν(s), (Kν)(s))

(τ − s)1−β
ds,

where (Kν)(τ) :=
∫ τ
0 k(τ, s)H(ν(s))ds. The Eq. (1.1) is equivalent to the above

fractional integral equation. That is, every solution of (3.1) is also a solution of

(1.1) and vice versa. In what follows, we consider Eq. (3.1) under the following

conditions:

(H1) e, g : [0, a]×R −→ R are continuous and there exist the continuous functions

a1, a2 : [0, a] −→ [0, a] such that

|e(τ, ν)− e(τ, υ)| ≤ a1(τ)|ν − υ|, B = sup {|e(τ, 0)| : τ ∈ [0, a]} ,

|g(τ, ν)− g(τ, υ)| ≤ a2(τ)|ν − υ|, C = sup {|g(τ, 0)| : τ ∈ [0, a]} .
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(H2) f : [0, a]×R×R −→ R is continuous and there exist the continuous function

a3 : [0, a] −→ [0, a] such that

|f(τ, ν1, υ1)− f(τ, ν2, υ2)| ≤ a3(τ) (|ν1 − ν2|+ |υ1 − υ2|) ,

D = sup {|f(τ, 0, 0)| : τ ∈ [0, a]} ,

for all νj , υj ∈ R, j = 1, 2, let A = maxi {|ai(τ)| : τ ∈ [0, a]} , in which i = 1, 2, 3 and

0 ≤ A < 1. Also, let there exists a nonnegetive constant W such that B,C,D ≤W .

(H3) The function H : BC([0, a]) → BC([0, a]) satisfies the Lipschitz condition,

i.e. there exists a constant N > 0, such that for any τ ∈ [0, a] and for all ν, υ ∈
BC([0, a]) the following relationship holds

(3.2) |(Hν)(τ)− (Hυ)(τ)| ≤ N |ν(τ)− υ(τ)|.

(H4) The operator H transforms the space BC([0, a]) continuously into itself, and

there exists a nondecreasing function ψ : R+ → R+ such that ∥Hν∥ ≤ ψ(∥ν∥) for

any ν ∈ BC([0, a]). Moreover, for every function ν ∈ BC([0, a]) which is nonnegative

on [0, a], the function Hν is nonnegative on [0, a].

(H5) If ∣∣∣∣m−1∑
j=0

νj + e(j)(0, ν0)

j!
aj
∣∣∣∣ ≤ L,

then there exists a positive solution r0 > 0 of the inequality

(3.3) L+W +Ar +
aβ

Γ(β + 1)
[2Ar + 2W +Aa∥k∥ψ(r)] ≤ r.

Now let’s consider the operators E,F,G defined on the Banach space BC([0, a])

as follows:

(Eν) (τ) = e (τ, ν(τ)),

(Fν) (τ) = 1
Γ(β)

∫ τ
0

f(s, ν(s), (Kν)(s))

(τ − s)1−β
ds,

(Gν) (τ) = 1
Γ(β)

∫ τ
0

g(s, ν(s))

(τ − s)1−β
ds.

Then we have the following Theorem.

Theorem 3.1. Suppose that assumptions (H1) - (H5) hold. Then, problem (1.1) -

(1.2) has at least one solution in the Banach space BC([0, a]).
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Proof. Let’s consider the operator Υ on the space BC([0, a]) using (3.1) as follows:

(Υν)(τ) =
m−1∑
j=0

νj + e(j)(0, ν0)

j!
τ j − (Eν) (τ) + (Gν) (τ) + (Fν) (τ).

Observe that by virtue of our assumptions, for any function ν ∈ BC([0, a]) the

function (Eν) is continuous on [0, a]. We demonstrate that the functions Fν and

Gν are continuous on [0, a]. For this purpose, consider an arbitrary function ν ∈
BC([0, a]) and ϵ > 0 and suppose that τ1, τ2 ∈ [0, a] such that |τ2−τ1| ≤ ϵ. Without

diminishing the whole issue, we can take τ1 < τ2. Then, taking into account our

assumptions we get

|(Gν)(τ2)− (Gν)(τ1)|

=
1

Γ(β)

∣∣∣∣ ∫ τ1

0

g(s, ν(s))

(τ2 − s)1−β
ds+

∫ τ2

τ1

g(s, ν(s))

(τ2 − s)1−β
ds−

∫ τ1

0

g(s, ν(s))

(τ1 − s)1−β
ds

∣∣∣∣
≤ 1

Γ(β)

∫ τ1

0
|g(s, ν(s))|

∣∣∣∣ 1

(τ2 − s)1−β
− 1

(τ1 − s)1−β

∣∣∣∣ds
+

1

Γ(β)

∫ τ2

τ1

|g(s, ν(s))|
(τ2 − s)1−β

ds ≤ 1

Γ(β)

∫ τ1

0
[|g(s, ν(s))− g(s, 0)|

+|g(s, 0)|]
[

1

(τ1 − s)1−β
− 1

(τ2 − s)1−β

]
ds

+
1

Γ(β)

∫ τ2

τ1

[|g(s, ν(s))− g(s, 0)|+ |g(s, 0)|] ds

(τ2 − s)1−β

≤ A∥ν∥+ C

Γ(β)
.
τβ1 − τβ2 + (τ2 − τ1)

β

β
+
A∥ν∥+ C

Γ(β)
.
(τ2 − τ1)

β

β

≤ 2ϵβ

Γ(β + 1)
(A∥ν∥+W ) .(3.4)

According to the above, we conclude that function Gν is continuous on interval

[0, a]. The same way, we have

|(Fν)(τ2)− (Fν)(τ1)| ≤
1

Γ(β)

∫ τ1

0
[|f(s, ν(s), (Kν)(s))− f(s, 0, 0)|

+|f(s, 0, 0)|]
∣∣∣∣ 1

(τ2 − s)1−β
− 1

(τ1 − s)1−β

∣∣∣∣ds
+

1

Γ(β)

∫ τ2

τ1

[|f(s, ν(s), (Kν)(s))− f(s, 0, 0)|
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+|f(s, 0, 0)|] 1

(τ2 − s)1−β
ds ≤ 1

Γ(β)

∫ τ1

0
[A(|ν(s)|

+|(Kν)(s)|) +D]

[
1

(τ1 − s)1−β
− 1

(τ2 − s)1−β

]
ds

+
1

Γ(β)

∫ τ2

τ1

[A(|ν(s)|+ |(Kν)(s)|) +D]
1

(τ2 − s)1−β
ds

≤ A∥ν∥+Aa ∥k∥ ψ(∥ν∥) +D

Γ(β)
.

[
τβ1 − τβ2 + (τ2 − τ1)

β

β

+
(τ2 − τ1)

β

β

]
≤ (A∥ν∥+Aa ∥k∥ ψ(∥ν∥) +W ) .

2ϵβ

Γ(β + 1)
.(3.5)

Therefore, the function Fν is continuous on the interval [0, a]. Finally, we deduce

Tν ∈ C[0, a].

We now consider the arbitrary function ν ∈ BC([0, a]) and using our assumptions,

for a constant τ ∈ [0, a] we have

|(Υν)(τ)| ≤
∣∣∣m−1∑
j=0

νj + e(j)(0, ν0)

j!
τ j
∣∣∣+ |e(τ, ν(τ))− e(τ, 0)|+ |e(τ, 0)|

+
1

Γ(β)

∫ τ

0

|g(s, ν(s))− g(s, 0)|+ |g(s, 0)|
(τ − s)1−β

ds

+
1

Γ(β)

∫ τ

0

|f(s, ν(s), (kν)(s))− f(s, 0, 0)|+ |f(s, 0, 0)|
(τ − s)1−β

ds

≤
∣∣∣m−1∑
j=0

νj + e(j)(0, ν0)

j!
aj
∣∣∣+A∥ν∥+B +

A∥ν∥+ C

Γ(β + 1)
aβ

+
A∥ν∥+Aa∥k∥ψ(∥ν∥) +D

Γ(β + 1)
aβ

≤L+W +A∥ν∥+ aβ

Γ(β + 1)
[2A∥ν∥+ 2W +Aa∥k∥ψ(∥ν∥)] .(3.6)

Therefore Υν ∈ B([0, a]). From the continuity of Υν on [0, a] along with the

Boundedness Υν in the same interval, we conclude that Υν ∈ BC([0, a]). More-

over, from the estimates (3.6) and assumption H5, we conclude that there exists

r0 > 0 such that the operator Υ transforms the ball Br0 into itself where Br0 =

{ν ∈ BC([0, a]) : ∥ν∥ ≤ r0} is a closed bounded and convex subset of BC([0, a]).

Let U ⊂ Br0 and ν, υ ∈ U such that ∥ν − υ∥ ≤ ϵ for every τ ∈ [0, a]. Using the

assumptions (H1) - (H3) , we obtain
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|(Υν)(τ)− (Υυ)(τ)| ≤|e(τ, υ(τ))− e(τ, ν(τ))|+ 1

Γ(β)

∫ τ

0

|g(s, ν(s))− g(s, υ(s))|
(τ − s)1−β

ds

+
1

Γ(β)

∫ τ

0

|f(s, ν(s), (Kν)(s))− f(s, υ(s), (Kυ)(s))|
(τ − s)1−β

ds

≤A∥ν − υ∥+ Aaβ∥ν − υ∥
Γ(β + 1)

+
Aaβ ∥ν − υ∥ (1 + aN ∥k∥)

Γ(β + 1)

<

(
1 +

aβ

Γ(β + 1)
+
aβ(1 + aN ∥k∥)

Γ(β + 1)

)
. ∥ν − υ∥.

We infer from the above that the operator Υ is continuous on Br0 . Now, we show

that the operator Υ satisfies the Darbo condition with respect to the measure ϖ0 in

the ball Br0 . Consider a nonempty subset U of Br0 such that ν ∈ U . suppose that

τ1, τ2 ∈ [0, a] such that |τ2 − τ1| ≤ ϵ, ϵ > 0. Without diminishing the whole issue,

we can take τ1 < τ2. Then, using the our assumptions and the estimates (3.4) and

(3.5), we have

|(Υν)(τ2)− (Υν)(τ1)| ≤
∣∣∣m−1∑
j=0

νj + e(j)(0, ν0)

j!
(τ j2 − τ j1 )

∣∣∣+ |(Eν)(τ1)− (Eν)(τ2)|

+ |(Gν)(τ2)− (Gν)(τ1)|+ |(Fν)(τ2)− (Fν)(τ1)|

≤|e(τ1, ν(τ1))− e(τ1, ν(τ2))|+ |e(τ1, ν(τ2))− e(τ2, ν(τ2))|

+ |(Gν)(τ2)− (Gν)(τ1)|+ |(Fν)(τ2)− (Fν)(τ1)|

≤Aϖ(ν, ϵ) +ϖ(e, ϵ) +
2ϵβ

Γ(β + 1)
(A∥ν∥+W )

+ (A∥ν∥+Aa ∥k∥ ψ(∥ν∥) +W ) .
2ϵβ

Γ(β + 1)
,

where

ϖ(e, ϵ) = sup { |e(τ1, ν)− e(τ2, ν)| : τ1, τ2 ∈ [0, a] , |τ1 − τ2| ≤ ϵ , ν ∈ [−r0, r0]} ,

ϖ(ν, ϵ) = sup { |ν(τ1)− ν(τ2)| : τ1, τ2 ∈ [0, a] , |τ1 − τ2| ≤ ϵ} .

Given that the function e is uniformly continuous on the bounded subset [0, a] ×
[−r0, r0], we conclude that ϖ(e, ϵ) −→ 0 as ϵ −→ 0. Consequently, from the above

estimate we get

ϖ0 (ΥU) ≤ Aϖ0 (U).

We conclude that the operator Υ satisfies the Darbo condition with respect to the

measure of noncompactness ϖ0 with the constant A < 1. This means that the

operator Υ is a contraction on the ball Br0 , with respect to ϖ0. Consequently,
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according to Theorem 2.5, we conclude that the operator Υ has a fixed point in the

ball Br0 and this completes the proof. �

4. An Example

In this section, we give an example to demonstrate the application of the obtained

results.

Consider the following nonlinear integro-differential equation of fractional order

CD1.25(ν(τ) +
1

10
sin ν(τ)) =

eτ

5 + |ν(τ)|
+

1

(τ + 3)2
.

|ν(τ)|
1 + |ν(τ)|

+
1

9

∫ τ

0

sτ2

1 + τ

(
1

4
+

∫ s

0
µν(µ)dµ

)
ds,

ν(j)(0) = νj , j = 0, 1, τ ∈ [0, 1].(4.1)

This equation is a special case of Eq. (1.1), where

β = 1.25, m = 2, a = 1,

e(τ, ν(τ)) =
1

10
sin ν(τ), g(τ, ν(τ)) =

eτ

5 + |ν(τ)|
,

(Hν)(τ) =
1

4
+

∫ τ

0
µν(µ)dµ

f(τ, ν,Kν) =
1

(τ + 3)2
.

|ν(τ)|
1 + |ν(τ)|

+
1

9
(Kν)(τ),

(Kν)(τ) =

∫ τ

0

sτ2

1 + τ

(
1

4
+

∫ s

0
µν(µ)dµ

)
ds.

We have

|e(τ, ν(τ))− e(τ, υ(τ))| ≤ 1

10
∥ν − υ∥,

|g(τ, ν(τ))− g(τ, υ(τ))| ≤ eτ∥ 1

5 + ν
− 1

5 + υ
∥ ≤ e

25
∥ν − υ∥,

∥f(τ, ν,Kν)− f(τ, υ,Kυ)∥ ≤ 1

(τ + 3)2
|ν − υ|+ 1

9
∥Kν −Kυ∥

≤ 1

9
(|ν − υ|+ ∥Kν −Kυ∥) .

From the above relationships, we conclude that conditions (H1) and (H2) are

satisfied with A =
1

9
and W =

e

25
. Also, easily check that the function H satisfies

conditions (H3) and (H4) with N = 1 and ψ(∥ν∥) =
1

4
+ ∥ν∥. By assumption
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ν0 = 0, ν1 = 1, we have L = 1.1. Finally, in order to verify assumption (H5), the

corresponding inequality has the form

1.1 +
e

25
+

1

9
r +

1

Γ(2.25)

[
2

9
r +

2e

25
+

2

45
(
1

4
+ r)

]
≤ r.

We can show that r0 = 1.29 is a solution of the above inequality and finally using

the Theorem 3.1, we conclude that Eq. (4.1) has at least one solution.

5. Conclusion

In this article, using the technique of measure of noncompactness and the Darbo

theorem under the appropriate assumptions, we studied the existence of solution of

nonlinear fractional integro-differential equations of the Hammerstein type in the

Banach space. In future work, we can investigate the existence and stability of

solution for fractional integro-differential equations of the Hammerstein type using

the techniques of noncompactness measures in an infinite interval.
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